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ABSTRACT

(Distribution Limitation Statement-No. 2)

Ultrasonic and thermal investigations of several common plastics, nose cone
materials, and alloys are presented. The ultrasonic data consist of measure-
ments of the acoustic shear and longitudinal velocities in the frequency range
of 1 to 10 MHz and as a function of temperature (to nu 125°C for most of the
plastics and to "' 2500 C for most of the alloys). Some information is presented
regarding the dependence of acoustic velocities on uniaxial stress in two
aluminum alloys. The temperature dependent ultrasonic data are used to calculate
the temperature dependence of the elastic moduli for the materials studied.

The thermal analyses describe a differential thermal technique (DTA) used to
study the phase transitions and chemical transformations of the reported
materials. This approach was used to measure the linear coefficient of expan-
sion and the specific heat at constant pressure over a temperature range of
,- -100 to 2000 C for the expansion characteristics, and , -100 to 7000C for the
specific heat measurements. In addition, heats of fusion are reported. In
some cases, the thermal behavior of the reported materials is listed to approxi-
mately 1200*C. The thermal and ultrasonic data are combined to calculate the

GrUneisen ratio as a function of temperature.

The application of ultrasonic and thermal investigations to the determination
of the equation of state of solids is also presented. The present study shows
that such applications are of significant importance to high pressure equation-
of-state determinations. The study also illustrates that many more applications
to the equation of state can be obtained through ultrasonic and thermal measure-
ments as a function of hydrostatic pressure.
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SECTION I

INTRODUCTION

Within the last few years, considerable interest has been evidenced

regarding the equation of state of materials subjected to extreme pressure and

temperature conditions. These conditions occur, for example, when engineering

materials are exposed to the environment resulting from a nuclear weapon deto-

nation, and lead to the requirement that the physical properties of such materials

be precisely known. A knowledge of physical properties then allows a prediction

of how a composite system of various materials will react to a nuclear environment,

and, thus, is a mandatory prerequisite in nose cone vulnerability programs.

In the resulting prediction program, a knowledge of various mechanical

properties (such as the bulk modulus and sound velocities), and of thermal

properties (such as the specific heat and linear expansion coefficient) allows

the determination of some parameters which are necessary in computer calculations.

Of primary importance among these is the Grneisen ratio, which relates a change

in internal energy to a corresponding pressure change. It has previously been

shown (Ref. 4) that this ratio can be accurately determined through a knowledge

of the longitudinal and shear acoustic velocities in combination with the thermal

expansion and specific heat of a specimen.

The temperature dependence of the GrUneisen ratio is likewise necessary

in determining the applicability of components in operational reentry systems.

Although the temperature dependence of this ratio can be easily determined

through the temperature dependence of thermo-mechanical properties, this infor-

mation is generally not available for most of the polymeric materials and

reinforced plastics. In view of this lack of information, this report supplies

detailed thermodynamic data on a wide variety of polymers, and some metals, which

are necessary for defining the thermal limits of these materials with respect

to their applicability as components in reentry systems.

The thermal analyses reported here were obtained with a differential thermal

analysis technique (DTA), in which the temperature of a specimen is continuously

compared with that of a reference. This approach allows the determination of the

temperature dependence of the specific heat capacity and thermal coefficient of

1
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expansion, in addition to a detailed description of such thermal properties as

crystallization, fusion, glass transitions, and decomposition temperatures.

Techniques are presented in the text regarding the application of the reported

thermal data in estimating the pressure and temperature dependence of the

GrUneisen ratio and other shock wave parameters, such as the slope of shock

velocity-particle velocity curves. Information is also presented regarding endo-

thermal and exothermal changes in polymers, post-curving of thermosetting resins,

polymerization of monomers, and oxidative decompositions.

Ultrasonic data are reported for a wide variety of polymers and a few alloys.

The reported data include temperature determinations of the shear and longitudinal

velocities (for acoustic frequencies in the low megacycle range) in isotropic

and anisotropic materials, and the relations between the propagation velocities

and the elastic moduli for materials of arbitrary symmetry. A uniaxial stress

technique is illustrated, which when used in conjunction with the ultrasonic

approach can yield the third-order elastic stiffness coefficients in solids

(Ref. 3). The third-order elastic constants of 6061-T6 aluminum were obtained

with this technique and are presented in the text. In addition, a detailed

section is presented which illustrates how the ultrasonic technique can be

employed to determine the pressure derivatives of the acoustic velocities under

hydrostatic compression. This technique originated with the early compres-

sibility measurements on solids by P. W. Bridgman (Ref. 1), and extended by

D. Lazarus (Ref. 2) who employed an ultrasonic method to measure the pressure

dependence of the acoustic velocitieo in several metals. However, the text

extends the approach by illustrating how the ultrasonic results obtained at low

pressures (about 10 kbars) can be extrapolated in some cases to estimate the

extremely high pressure equation of state of solids (500 to 1000 kbars).

Section II reports the temperature dependence of the acoustic velocities

for several materials and the resulting determinations of the bulk moduli in

these materials. Section III is concerned with the thermal description of the

same materials, and Section IV is devoted to the application of thermal and

ultrasonic data to the determination of the high pressure equation of state of

solids. These applications include (1) estimations of the volume pressure rela-

tionships, (2) estimations of shock and particle velocities versus pressure, and

(3) estimations of the temperature and pressure dependence of the GrUneisen ratio

for materials of arbitrary symmetry.

2
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SECTION II

ULTRASONIC VELOCITY TECHNIQUE

1. Experimental Method

a. Shear Velocity Techniques

The techniques for determining the acoustic velocity in the materials

investigated in the present study has been described in detail in a previous

report (Ref. 4). Basically, the techniques consist cf measuring the transit time

of pulsed acoustic waves through various thicknesses of solid materials. This

method, as illustrated in Reference 4, was used to determine the longitudinal

velocity versus temperature in several plastics and nose-cone materials. As

shown in that report and Section IV of this report, it is also necessary to know

the temperature dependence of the shear velocity to calculate many of the

parameters necessary in equation of state studies. This section includes the

measurements of shear velocities for most of the materials studied in Reference 4.

Shear velocities are determined with essentially the same technique as

that used for measuring lorgitudinal velocities. With the shear measurements,

however, AC-cut quartz transducers were used to excite transverse vibrations

within the specimen. The transducers were bonded to the samples with several

types of viscous bonding techniques. The various bonding agents found most

effective in the present study for shear wave transmission are the following:

Sodium Silicate (water glass)--effective bond from room
temperature to approximately 200*C. Most effective for
metals and glasses.

Eastman 910 Adhesive--good bond from room temperature
to at least 200*C. The transducer can be removed from
the specimen by heating to approximately 300*C for a
few minutes.

Phenyl Salicylate--thin bonds possible at room tempera-
ture. Melts at 42*C.

Dow Chemical Resin 276-V9--thin bonds obtainable by
bonding the transducer under moderate pressure at 60*C.
Shear rigidity is good to approximately 60*C.
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For most of the measurements reported here the shear velocity was

obtained for frequencies of interest at 1 and 3 Mjz. The velocity was measured

by observing the unrectified transmitted pulses for sample thickness ranging

from q I to 10mm (Ref. 4).

b. Pulse-Echo Technique

For most of the longitadinal velocity analyses reported here the

techniques used in Reference 4 were employed. However, two additional methods

were found more appropriate for certain applications. One of these is the

pulse-echo technique which is particularly useful in increasing the accuracy

of velocity measurements for low loss materials, such as some of the metals and

alloys reported in this report. This method can likewise be used for shear

velocity measurements, and consists of applying a pulsed signal to a single

longitudinal or shear transducer located on the specimen surface, and observing

the reflected echoes from the specimen free surfaces with the transmitting

transducer. The net transit time for any one echo is then obtained by the con-

ventional method of extrapolating between time marks to a reference cycle in

the echo pulse. The advantage of this technique is that bonding effects between

the transducer and specimen are minimal so that a high degree of accuracy can

be obtained without applying any correction for circuit delays or delays in the

acoustic bonding. The main disadvantage is that the method is usually suitable

only for low loss materials, so that a sufficient number of well separated

pulses can be observed. Also, since the leading edges of the reflected acoustic

signals become somewhat distorted and reduced in amplitude upon reflections from

the rear surface of the specimen, it is sometimes difficult to identify the

correct reference peak in the echo with this technique.

Another consideration appropriate to the echo technique is that sample

surfaces must be extremely flat and parallel, a.d that a sufficiently high

frequency must be used to reduce diffraction effects. When a sound wave propa-

gates into a semi-infinite medium the plane wave region is essentially limited

to a distance given by (Ref. 5)

2Xd = - (1)

where R is the radius of the transducer and X is the wavelength of sound in the

medium. Beyond this region the wave diverges at an angle a determined by
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sin 1.22A (2)

These effects generally limit the frequency for our studies to a minimum of

about 6 MHz with the pulse-echo method. In metals a frequency of 6 MHz poses

no serious problems because the attenuation is still small in this region.

However, in plastics the attenuation is sufficiently large as well as a stron?

function of frequency and temperature, so that temperature measurements with the

pulse-echo technique become of marginal applicability. Another disadvantage of

this technique is that layered structures, such as some of the nose cone materials,

produce increased scattering at intermediate layers, making the technique

generally inapplicable for these materials. However, the method possesses

inherent capabilities of high accuracy and has been used where suitable, as will

be discussed in later sections.

c. Immersion Technique

Another technique which has proven extremely useful with regard to

accuracy and economy of measurement time is an immersion technique. This

approach is effectively limited to longitudinal measurements because of the poor

shear transmission characteristics of liquids, although it offers the possibility

of measuring shear velocity by constructing the sample geometry so that mode

conversion from longitudinal to shear waves occurs within the specimen. In this

case, the sample is constructed so that the angle the longitudinal wave makes

with a sample free surface is beyond the critical angle for longitudinal wave

reflection. For this condition only a shear wave is reflected. Careful con-

sideration of the propagation distance of the detected shear wave then allows

a calculation of the shear velocity.

Basically, the immersion method is schematically illustrated in Figure 1.

Conventional circuitry is used for generation and detection of the acoustic

signals. This approach differs, however, from the solid buffer technique

described in Reference 4 in that the liquid (water in this case) acts as a

buffer. Reproducibility, and hence, precision are significantly increased since

a coupling bond (such as oil or one of the viscous bonds) is not required between

the transducers and the specimen. The transducers used in this arrangement were

3/4 inch in diameter, and were coaxially plated with a chrome-gold vacuum

deposit. The active center (as shown in Figure 2) was 5/8 inch in diameter.

The crystals are mounted in an aluminum sample holder, so that the back surface
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(The transducers used here are lead zirconate titanate (PZT-5) which are
plated with a chrome-gold vacuum deposit. The active center of the

transducers is approximately 5/8 inch.)
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is exposed to the immersion fluid and the center electrode is air-backed. The

contact between the transducer and holder assembly is about 0.02 inch along the

radius and over the complete circumference of the transducer. ThiL contact area

does not affect the operating characteristics of the transducer or introduce

spurious side effects, because the active center is well separated from the point

of contact. Electrical contact between the aluminum holder and the back surface

of the crystal at the point of contact provides the ground.

The acoustic transit time through the specimen is obtained by inserting

the specimens into a sample holder as shown in Figure 2. The holder was then

placed in a slot which aligned the sample parallel to the transducers, which were

located parallel to each other about one inch apart. No attempt was made to

focus the acoustic beam in the path. However, by moving the transducer holders

or by probing the area around the acoustic path with a piece of metal and

observing the amplitude and transit time change, it was found that diffraction

losses are minimal for the separation distances and frequencies employed here.

By inserting an empty sample holder it was also found that the holder did not

affect the determination of the transit time through the specimen.

The acoustic velocity in a specimen is calculated by separately measuring

the transit time through distilled water and the water-sample combination.

The velocity in the sample Vs is then given by

dV s (3)

w

where

V = longitudinal velocity in the specimenS

V = longitudinal velocity in waterw

ti = transit time through the water-sample combination

t = transit time through the water only0

d = sample thickness

In practice, the time difference, ti-too was usually directly obtained

by measuring the time between corresponding reference peaks with and without the

sample inserted. Cedrone and Curran's (Ref. 6) value of 1.438 + (2.4 . 1O-3)T

mm/Psec (T in *C) for the longitudinal acoustic velocity in distilled water (over

the range of from 200 to 30
0C) was used co calculate the quantity -.

w

7
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The immersion technique has proven especially useful for thin specimens

with high acoustic velocities. The main advantage of this method results from

the elimination of an acoustic bond required in the solid buffer approach. This

bonding can cause appreciable errors, especially at the lower frequencies

(n, 0.5 to 3.0 MHz). The results obtained by the two methods are in good agreement

above 3 MHz. Below this frequency, the reproducibility associated with the solid

buffer approach is insufficient to allow valid comparisons.

Figure 3 illustrates the precision demonstrated by the immersion technique.

The graph was obtained by measuring the transit time difference when thin pieces

(1.600 mm to 7.953 mm) of 24ST aluminum were inserted in the bath. These

thicknesses of aluminum were chosen as calibration standards because the range

of thickness and longitudinal velocity is similar to most of the materials studied

with this technique.

Note in Figure 3 that the least-squares line extrapolates to zero when

the thickness is zero. This implies that transit time corrections other than

those associated with the acoustic velocity in distilled water are not required

to calculate the velocity in the specimen. This is not the case for the solid

buffer method where time corrections must be applied for the bonding interfaces

between various components of the acoustic assembly. The figure also shows that

there is no noticeable dispersion effects presert la this method at f-cequencies

of 0.5 to 6 MHz. The least squares slope in Fi.gure 3 is 6.46 + 0.05 nmL/Psec,

which is within 1 percent of the handbook value of 6.42 mm/psec for aluminum.

The errors associated with the immersion technique are relatively

insensitivs to experimental limitations such as sample alignment in the acoustic

path, dispersion in the water, or impurity of the water. Calculation shows that

the source of error arising from a misalignment of 5 degrees in the sample

orientation is less than 1 percent, and, therefore, can be considered negligible

with this technique because sample alignment was usually within 2 degrees.

Barthe and Noble (Ref. 7) report a frequency dispersion in distilled water of

less than 3 parts in 105 in this frequency range. They also indicate that the

velocity in air-saturated distilled water is only 1 part in 103 greater than

that in degassed water, so that this contribution to the overall error is small.

These considerations and the typical error associated with flatness and paral-

lelism of the samples affords an estimated uncertainty on the order of 1 to 2

percent with this technique. The technique has been extremely useful in per-

forming quick analyses, or in measuring the frequency dependence of velocity and

acoustic attenuation.
8



AFWL-TR-67-91

9.0

80-

70

24 ST ALUMINUM
-0.5 WE1

60 , 1. 5 MHa O20MIHz
G{ , 6.0MIHz

150-

20

0 A 0 S O6 07 OS S tO I I 12TRANSIT TIME, pse

Figure 3. Calibration Curve for the Immersion Method at 22*C

d. Uniaxial Stress Technique

Some work 1i also reported here on the dependence of longitudinal and

shear velocities with uniaxial pressure in two aluminum alloys. As explained

in Section IV, this technique is a means of determining the third-order elastic

constants* of solids.

Since the velocity, and consequently the roundtrip time, changes only

slightly with applied uniaxial stress, it was necessary to precisely detect small

changes in transit time. This was accomplished by use of the variable time delay

shown in Figure 4. By triggering the oscilloscope just before a preselected

echo arrived, the echo could be viewed on an expanded time scale and small changes

in transit time could easily be detected with th-t delay potentiometer. A change

of 2 to 3 nsec could be reproducibly measured Aith this arrangement. Since the

total time delays were 30 to 40 Usec, the resulting precision work was about

1 part in 104.

The third-order elastic stiffnesses are defined as the isothermal strain deriva-
tives of the isentropic second-order stiffnesses as determined at atmospheric
pressure.

9
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Figure 4. Schematic Diagram of Circuitry Used for Determining
Small Changes in Transit Time Occurring to the Uniaxial Technique.

With the uniaxial method the samples were generally prepared as

approximately 1-inch cubes and were machined flat and parallel to within

N 0.003 mm or less than 0.1 milliradians. For the uniaxial measurements it

was necessary that the corners be square to ensure one-dimensional stress in

the specimen. This was achieved with various degrees of success; however,

the corners were generally square to within ", 0.5 milliradians.

Both quartz and PZT-5 (lead zirconate-titanate) transducers were used in

determining the velocity change versus applied uniaxial stress. For most of the

measurements the transducers were operated at their fundamental frequencies of

3 MHz. It was found that for both the longitudinal and shear modes the quartz

crystals (X-cut for longitudinal measurements and AC-cut for shear measurements)

produced cleaner waveforms, and therefore were used for most of the stress

measurements. The disadvantage of quartz over PZT is that the generated stress

fields for a given input voltage are lower because of the lower piezoelectric

coefficients. However, this caused no experimental problems, because the ampli-

fied received signals were well above background noise.

10
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For the pressure work some difficulty was encountered in choosing a

proper bond for attaching the transducers to the specimens. A rigid bond is

necessary for the shear measurements to transmit the transverse motion of the

transducer to the specimen. Also, for the stress measurements a bond is neces-

sary which will not affect the pulse waveform as the lateral boundaries of the

specimen contract under uniaxial compression. A light-viscosity silicone oil

was satisfactory for the longitudinal experiments, and an epoxy resin

(Eastman 910) was satisfactory for the shear measurements. Both types of trans-

ducers were bonded to the specimen under pressures of n, 5 psi.

The most important consideration in uniaxial measurements is the provision

of a uniform uniaxial load. The system used to accomplish this requirement is

shown in Figure 5. The entire system consists of a 20-ton laboratory press

driven by a manually operated pump. To eliminate the effect of friction in the

hydraulic system, the pressure gauges used in these experiments were calibrated

with 10,000 and 50,000-lb proving rings. The rings had been previously cali-

brated at the National Bureau of Standards and were accurate to within 0.3 percent

of full scale. The pressure was maintained to within + 20 psi throughout the

pressure range of 0 to 11,000 psi. The ball bearing arrangement shown in the

figure maintained alignment between the piston and sample.

Furthermore, shear forces arising because of the difference in lateral

expansions of the piston and specimen can cause undesirable effects. An analysis

by Bogardus (Ref. 8) indicates that these forces can be minimized by matching

the ratio of Young's modulus to Poisson's ratio for the sample and piston surface.

Measurements were therefore made with a 1/4-inch thick piece of aluminum inserted

between sample surface and piston anvil. However, no difference from the

original measurements could be detected, so it was concluded that this effect is

insignificant in the present study.

Since a temperature change of 0.5C in aluminum corresponds to a larger

change in some of the velocities than a pressure change of 500 psi, it was

important to maintain close temperature control during a pressure run. An enclo-

sure around the piston controlled the temperature variation to ^ O.0 C during a

set of pressure measurements. The variation in temperature from one set of

measurements at any given temperature to another was nu 0.5*C. However, the

present technique was not sensitive enough to detect a difference in slope

resulting from a change in environment of 0.5C so that the data were plotted

together.

11
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Figure 5. Experimental Arrangement in the Uniaxial Stress Technique.
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Indeterminable effects in this technique may lead to errors which are

greater than those discussed above, and arise because of misalignment between

the piston and the sample, variable stress distribution, and plastic yielding

in the specimen. Misalignment between specimen and piston is considered negli-

gible in the present experiments, because the results for any one specimen were

reproducible to within the stated limits of precision. Plastic flow, and possibly

dislocation movement, can likewise contribute an error to the calculations of

the third-order coefficients, because the calculations rely upon purely elastic

deformation.

2. Experimental Results

a. Longitudinal and Shear Velocities in Common Plastics

The longitudinal and shear velocities in the materials reported in this

section were obtained by measuring the transit times through various sample

thicknesses and performing a least-squares plot to obtain the slope. For most

of the velocity-temperature data a quadratic function was found to best fit the

data.

All of the shear velocities reported herein were obtained by bonding

two transducers to either side of a flat and parallel specimen, and measuring

the acoustic transmission times for various sample thicknesses. The longitu-

dinal velocities in Delrin Acetal* and Lexan were obtained with the solid buffer

technique (Ref. 4), which likewise requires the use of two separate transducers.

The accuracies of all the velocity data reported here are estimated to be 1 to 2

percent.

(1) Delrin Acetal

This material is one of the more recently developed plastics which

possess material properties comparable with many of those common to metals.

It is a highly crystalline, stable form of polymerized formaldehyde (super

polyoxymethylene), which exhibits high tensile strength, rigidity, and creep

resistance over a wide temperature range. The material used in the present

experiments exhibited a mean density of 1.434 g/cc. The variations of the

Delrin Acetal is a registered trademark of E. I. DuPont de Nemours and Co.

13



AFWL-TR-67-91

longitudinal and shear velocity with temperature in Delrin Acetal are shown

in Figures 6 and 7, respectively, as corrected for thermal expansion.*

The temperature dependence of the longitudinal velocity was obtained by

the solid buffer technique, and the shear velocity versus temperature was

obtained by bonding the transducers directly to the specimen. The data for the

longitudinal mode of propagation indicate negligible dispersion in the frequency

range of 1.5 to 3.0 MHz. The data for the shear velocity are limited to 1 MHz

in the present experiments, because the attenuation of the third harmonic was

too great to allow accurate velocity measurements at this frequency.

The least-squares fit of the data corres- ding to the graphs of

Figures 6 and 7 are

Longitudinal Velocity, V - 2.58 - (4.21 x 10-3)T - (1.25 x 1O-5)T 2 ,

250 to 1250C

Shear Velocity, Vt - 1.19 - (3.69 x 10-3)T - (1.39 x 10-5)T 2 ,

250 to 1000C

where the velocity units are mm/sec, and temperature T is in *C.

The application of the velocity data to the calculations of the elastic

moduli is largely limited by the acoustic attenuation arising from internal

friction. The dissipation processes which are app.icable to the present case

are those associated with velocity gradients induced by the acoustic vibrations.

These losses may be grouped into two general classes, depending upon whether

the mechanical behavior of the specimen corresponds to the Maxwell or Voigt

model (Ref. 9).

Based upon the appropriate model, the present data could be used to

calculate the frequency dependent moduli in Delrin Acetal. However, the

velocity data would have to be supplemented with measurements showing the

dependence of velocity and attenuation with frequency to verify the applicable

model.

Assuming that the viscous terms are small enough that the mechanical

behavior is essentially elastic, the elastic moduli can be derived from the

*
All of the thermal expansion coefficients required for velocity correction as
used in this section are reported in Section III.

14
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Figure 6. Longitudinal Velocity Versus Temperature in Deirin Acetal.
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two sets of reported velocities. In terms of the velocities, Young's modulus E,

the shear modulus G, and the bulk modulus B are given as

V2j3V2 4V2)

£ t

G - (4)

B +2 4/3 V2)

In units of dynes/cm2 and as function of temperature (in *C) the adiabatic moduli

(in the range of from 250 to 100*C) for Delrin Acetal are therefore

Es -5.81 x 101 0 - (4.57 x 108)T - (6.25 x 105 )T2

Bs  7.00 x 1010 - (2.10 x 108)T

G - 2.13 x 1010 - (1.76 x 108)T - (2.84 x 105 )T2

The quantities Bs and Es above are the adiabatic moduli. Although the bulk

modulus was somewhat nonlinear with temperature as can be seen by inserting the

quadratic functions of velocity and density into the equation for B5 , the linear

fit agrees with the experimental data to withia 1-1/2 percent over the indicated

temperature range. As shown in Section IV, it is necessary to know the tempera-

ture derivatives of the bulk modulus in many calculations and a constant derivative

introduces significant simplifications. A linear fit of the bulk modulus versus

temperature has been found appropriate for all the polymers reported here.

(2) Poly Penco Nylon*

Figure 8 shows the dependence of shear velocity on temperature in

Poly Penco Nylon (density 1.14 g/cc). The data were obtained over the tempera-

ture range of from 250 to 100*C, and are corrected for thermal expansion. The

attenuation of the 3 MHz harmonic was too great to allow a reliable determination

of the velocity at that frequency. The least-squares fit for the data represented

in Figure 8 is

V = 1.15 - (2.35 x 10- 4)T - (4.48 x 10-5)T2
t

Poly Penco Nylon is a registered trademark of The Polymer Corporation.
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Figure 8. Shear Velocity Versus Temperature in Poly Penco Nylon.
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Although the elastic moduli have not been calculated for this material, the

velocity data in Tables 1 and 2, in conjunction with thermal expansion data

presented in Section III, can be used to calculate all of the moduli as illus-

trated above for Delrin Acetal. The most important quantity in equation of

state calculations is the temperature dependence of the bulk modulus so that

a table of this moduli for the plastics studied here is presented at the end

of Section II, paragraph 2a.

(3) Teflon*

The shear velocity in TFE Teflon (density, 2.19 g/cc) is shown in

Figure 9. Again, the experimental technique was not sensitive enough to allow

a determination of the velocity of the 3 MHz acoustic wave. Because of the

low-friction surface of teflon, some difficulty was experienced in maintaining

a good bond between the specimen and transducer. The data therefore show more

variation than that experienced in the previous two materials, due to nonrepro-

ducibility of bonding.

The variation of the shear velocity near room temperature was too

great to allow a reliable observation of the second-order transition as observed

by Arnold and Guenther (Ref. 10) in the longitudinal velocity. The data cor-

responding to the temperature range of from 250 to 150C were therefore fitted

to the following polynomial

Vt = 0.581 - (0.345 x 10-2)T + (0.10 X 10- 4 )T 2

(4) Type G Plexiglas**

Figure 10 exhibits the shear velocity as a function of temperature

in Type G Plexiglas. This material, which is a methyl-methacrylate polymer,

exhibited a mean density of 1.19 g/cc. As indicated in Figure 10, there is a

difference of I percent in the velocity at 1.0 and 3.0 MHz. Although this

uncertainty approaches the limitations of the techniques, both curves were fitted

to separate polynomials. The results are

1 MHz, Vt = 1.39 + (5.99 - 10-4)T - (2.32 x 10- 5 )T 2 , 250 to 125 0 C

3 MHz, Vt = 1.43 - (6.47 × 10-4)T - (1.10 x 10- 5 )T 2 , 250 to 100 0 C

Teflon is a registered trademark of E. I. DuPont de Nemours and Co.

Plexiglas is a registered trademark of Rohm & Haas Co.
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Figure 9. Shear Velocity Versus Temperature in TFE Teflon.

1.40-

1iio

IL

120

TYP 6 PLEXIGLAS
DENSITY 1.19 I/cc

I Ills
1 3 lIla

110-

25 50 75 100 125
TEIPERATURE, OC

LAigure 10. Shear Velocity Versus Temperat i- in Type G Plexiglas.

20



AFWL-TR-67-91

It is also noted that the separation in the velocities at ,. 1000C

appears to be ,. 2 percent. This effect could be due to a frequency dependent

relaxation mechanism, because increasing the temperature of a viscoelastic

material is equivalent to lowering the frequency (Ref. 9).

(5) Polyethylene

Figures 11 and 12 illustrate the variation of shear velocity in

two different densities of polyethylene and the dependence of the velocity on

temperature. Again, some dispersion in the high-density polyethylene was noted

between 1 and 3 MHz (Figure 12), so that separate curves were plotted for the

two frequencies.

Of particular interest is the large difference in velocity

(x a factor of two) corresponding to a density change of '. 5 percent. Arnold

and Guenther (Ref. 10) have measured the longitudinal velocity corresponding to

the two different densities of polyethylene and obtained the results of 1.99

mm/isec and 2.55 mm/jisec at room temperature for the densities of 0.916 g/cc

and 0.964 g/cc, respectively. The change in the longitudinal velocity is there-

fore - 25 percent for this change of density. However, the longitudinal velocity

is a function of two of the independent elastic constants in an isotropic medium

(the Lame' constants, X and p), whereas, the shear velocity depends only on the

shear modulus or Lame' constant P (G as used earlier is identical with the

constant 0).

The magnitude of variation in the shear velocities observed in the

present experiments can be verified through correlation with other elastic

properties of the material. Estes (Ref. 11) states that for polyethylene the

elastic modulus in tension varies by approximately an order of magnitude for

the two densities of polyethylene used here. This modulus cannot be directly

related to any dynamically determined modulus, such as the Young's modulus,

because of creep and stress relaxation which are present in static tests.

However, the effective modulus as reported by Estes is a function of both Lame'

constants, and hence, would be influenced significantly by the variation of the

shear modulus with density.

More direct support of the reported difference in shear velocities

can be obtained by considering Young's modulus in the two materials. Using the

previous results (Ref. 4) for the longitudinal velocities and applying the

21
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Figure 11. Shear Velocity Versus Temperature in High
Density Polyethylene (0.967 g/cc).

elastic relations presented earlier, the reported data give the values of

3.2 x 1010 and 0.78 x 1010 dynes/cm2, respectively, for Young's modulus in the

high and low density specimens. Young's modulus can also be related to the

extensional or thin rod velocity, VextD as E _ pV2x. These velocities are cal-
ext, ext,

culated from the present data to be 1.8 and 0.91 mm/psec for the high and low

density polyethylene, respectively. The above calculations are in good agreement

with Davidse's (Ref. 12) direct measurements of 1*9 and 0.9 mm/sec for the

extensional velocities corresponding to the respective densities of 0.967 and

0.922 g/cc. The least-squares fit of the shear velocities for the densities

of polyethylene in the temperature range of from 25* to 100C as shown in

Figures 11 and 12 are

density 0.922 g/cc, 1 MHz, Vt = 0.554 - (0.81 x 10-4)T - (0.685 x 10- 7)T2

density 0.967 g/cc, 1 MHz, Vt = 1.29- (7.56 x 10-3)T + (4.36 . 10-6)T2

3 MHz, Vt = 1.32 - (7.85 . 10-3)T + (9.71 x 10- 6 )T2
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(6) Lexan*

Figures 13 and 14 illustrate the variation of the longitudinal and

shear velocities with temperature in Lexan (a polycarbonate, density 1.20 g/cc).

Both curves were corrected for thermal expansion using the manufacturer's value

of 6.75 x 10- 5/OC for the linear coefficient of thermal expansion. The longi-

tudinal velocity was obtained with the solid-buffer technique.

Kunze (Ref. 13) has reported typical compressive and rigidity moduli

for polycarbonates as obtained in static tests. His values for the modulus of

elasticity and the shear modulus are 3.40 x 105 and 1.16 x 105 psi, respectively.

Using the appropriate equations of elasticity, the present data on the longi-

tudinal and shear velocities yield 3.73 x 105 and 1.45 x 105 psi for Young's

modulus and the shear modulus at 25*C, respectively. This agreement is fair

considering the nature of both tests. Kunze does not report the uncertainty of

his values nor a specific polycarbonate. Furthermore, static tests, as mentioned

earlier, dre generally influenced by creep and stress relaxation so that a direct

comparison should not be made with the present data. Since the uncertainties

for velocities in the present experiments are approximately 1 to 2 percent, the

uncertainties in the elastic moduli as calculated above are on the order of

2 to 5 percent. The longitudinal and shear velocities given in terms of tempera-

ture for Lexan are

V£ - 2.31 - (3.69 x 10-3)T + (6.90 x 10-6)T2 , 250 to 125 0C

Vt = 0.954 - (0.199 x 10-2)T + (0.528 x 10- 5)T2 , 250 to 900C

(7) Mylar**

The longitudinal velocity in Mylar was also obtained with the

immersion technique. This approach wai necessary since the buffer technique

does not yield good accuracy with extremely thin samples (e.g., 10 to 14 mils

in the case of Mylar) because of the reproducibility of bonding the buffers to

the specimen. However, with the immersion technique, reproducibility errors

become less important because the fluid (water was used in the present experi-

ments) acts as a buffer and transit times corresponding to different insertions

can be reproduced to within a few nanoseconds.

*
Lexan is General Electric Company's ttademark for polycarbonate resin.

**
Mylar is a registered trademark of E. I. DuPont de Nemours and Co.
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Figure 13. Longitudinal Velocity versus Temperature in Lexan.
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The velocity in Mylar was obtained for the frequencies of 2.0, 4.0,

and 12.0 MHz. The acoustic wavelengths ranged from 1 mm to 1 0.2 mm for these

frequencies, with the lowest wavelength corresponding to approximately the sample

thickness. For this range of frequencies, a trend in the velocity data was not

observed within the limitations of the technique so that the results were averaged

together. The average longitudinal velocity in 10 mil Mylar at 21.0*C as obtained

in the present experiments is 2.64 + 0.09 mm/sec. The velocity ir. 14 mil Mylar

is 2.29 + 0.06 for the corresponding experimental conditions.

Tables 1 and 2 summarize the least-squares results for the shear and

longitudinal velocities in common plastics. Table 3 lists the coefficients for

the adiabatic bulk modulus versus temperature for the common plastics listed in

Section II, paragraph 2a. The coefficients Bs  and (3BS/aT are defined as
0,0 f 0/ 0,0

the adiabatic bulk modulus at atmospheric pressure (P-o; this notation will be

explained further in Section IV) and at OC, and the temperature derivative of

the adiabatic modulus for the corresponding conditions. The bulk modulus

expanded in terms of temperature at atmospheric pressure then takes the form

Bs s Bs+(_2)T (5)

for T in *C.

b. Longitudinal and Shear Velocities in Nose Cone Materials

Measurements made on some of the more common nose cone materials are

described in this section. The emphasis has been to develop a technique for

using the ultrasonic method for determining equation-of-state parameters in some

of the recently developed anisotropic layered materials. f the layered

materials studied in Reference 4, carbon phenolic and General Electric Fiberglas

exhibited the best reproducibility and uniformity of material structure and were

therefore studied first. The study is being continued; however, the results

reported in Section II, paragraph 2b illustrate the experimental techniques

involved.

(1) Carbon Phenolic

The results on the temperature and orientation dependence of the

longitudinal velocity in GE carbon phenolic have been reported in Reference 4.

The work reported here refers to the dependence of the shear velocity on the

corresponding parameters, and a theoretical prediction of the dependence of

27



AFWL-TR-67-91

Table 1

SHEAR VELOCITIES IN COMMON PLASTICS VERSUS TEMPERATURE

S Polyethylene TFE Type G Delrin

Temp. C 0.922 g/cc 0.967 g/cc Teflon Plexiglas Nylon Acetal Lexan

25.0 0.534 1.11 0.501 1.391 1.12 1.090 0.908

30.0 0.529 1.07 0.486 1.388 1.11 1.067 0.899

40.0 0.521 0.999 0.459 1.377 1.07 1.026 0.883

50.0 0.512 0.928 0.434 1.362 1.03 0.975 0.868

60.0 0.503 0.857 0.410 1.343 0.979 0.924 0.854

70.0 0.494 0.787 0.398 1.319 0.919 0.864 0.841

80.0 0.485 0.718 0.370 1.290 0.849 0.808 0.829

90.0 0.475 0.650 0.352 1.256 0.771 0.752 0.818

100.0 0.466 0.583 0.337 1.218 0.683 0.688

110.0 0.516 0.324 1.176

120.0 0.451 0.313 1.128

(All velocities correspond to a frequency of 1.0 MHz.)

Table 2

LONGITUDINAL VELOCITIES IN COMMON PLASTICS VERSUS TEMPERATURE

Temp. Polyethylene TFE Type G Nylon Delrin

0.922 g/cc 0.967 g/cc Teflon Plexiglas Acetal Lexan

25.0 1.99 2.56 1.40 2.71 2.72 2.47 2.22

30.0 1.96 2.52 1.36 2.70 2.70 2.44 2.20

40.0 1.88 2.44 1.32 2.68 2.65 2.39 2.17

50.0 1.77 2.35 1.29 2.65 2.61 2.34 2.14

60.0 1.67 2.28 1.26 2.61 2.56 2.28 2.11

70.0 2.20 1.24 2.58 2.51 2.22 2.08

80.0 2.11 1.22 2.54 2.45 2.16 2.06

90.0 2.04 1.20 2.50 2.38 2.10 2.03

100.0 1.96 1.17 2.47 2.30 2.03 2.01

110.0 1.15 2.23 1.97 1.99

120.0 1.12 1.90 1.97

(The data were taken from Reference 4, with the exception of Delrin Acetal and
Lexan, and represent average values over the frequency range 1.5 to 3.0 MHz.)
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Table 3

THE EXPANSION COEFFICIENTS OF THE BULK
MODULUS VERSUS TEMPERATURE IN COMMON PLASTICS

Plastic S0 "-i0,0

(kbars) (kbars/*C)

Polyethylene, 0.922 g/cc 37.9 -0.262

Polyethylene, 0.967 g/cc 51.8 -0.210

Type G Plexiglas, 1.19 g/cc 58.6 -0.113

Poly Penco Nylon, 1.14 g/cc 69.9 -0.188

Delrin Acetal, 1.434 g/cc 70.0 -0.210

Lexan, 1.20 g/cc 48.3 -0.113

(Temperature range, 6 250 to 100°C.)

longitudinal velocity upon angle of incidence with respect to the laminas.

Carbon phenolic from two different sources was used to determine the shear

velocity in the present experiments. The samples from Douglas-McDonnell

Aircraft Corporation* exhibited a structure consisting of approximately 35

layers per centimeter and a density of 1.40 g/cc. The material from General

Electric Company indicated a spacing of approximately 30 layers/cm and a density

of 1.48 g/cc.

Figure 14 illustrates the nomenclature used to describe the

propagation conditions in the layered structures. Both of these materials were

essentially isotropic in the plane of the layers (x-y plane). For materials

exhibiting such transverse isotropy the stress-strain matrix is significantly

simplified and there are only five elastic stiffness coefficients which describe

the material. As shown in Appendix I the five measurements which are necessary

to yield these coefficients are as follows

Santa Monica, California
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Figure 15. Coordinate System Used for Materials
Exhibiting Transverse Isotropy.

V zz longitudinal wave in z-direction

V zx longitudinal wave in x- or y-directions

V t,45 longitudinal wave at a 450 angle between the x and z plane
(or equivalently, the y and z plane)

Vs,z)x shear wave in z-direction with displacement in x- or y-direction

V sx)z  shear wave in x-direction with displacement in z-direction

( V shear wave in x-direction (y-direction) with displacement
s'x y in y-direction (x-direction)
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The relations between the velocities and the corresponding stiffness

coefficients are (see Appendix I):

Vix C C _D

33 II c33j 2

2 c13 ++ 2
= c1 1 + c 33+ 2c 44+ c 1 1  c 33 Y ~c _ + c)

V Z,45 2 2p

(6)

V =C1 - 4I12

where p is the density

The most convenient test of the symmetry condition of transverse

isotropy is to compare the shear wave velocities obtained for propagation in

the z direction with displacements in the x and y directions to that for propa-

gation in the x direction with displacement in the z direction. For transverse

isotropy all three velocities should be equal. For the Douglas samples the

results for the shear velocities in the various eirections are

Propagation Condition Velocity, mm/Psec

VWsz~ x  2.15 + 0.03 (1 MHz)

2.19 + 0.01 (3 MHz)

(v 2.56 + 0.03 (1 MHz)

2.37 + 0.01 (3 MHz)

(V) 2.23 + 0.02 (1 MHz)

2.18 + 0.01 (3 MHz)

(v E)y 2.53 + 0.04 (1 MHz)

2.49 + 0.01 (3 MHz)
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Here the x direction was chosen to lie along one of the weave directions when

viewing a layer plane and y was the orthogonal direction in the plane. The

results reported here were obtained from the use of the 5th through 9th cycles

as reference peaks in the unrectified received pulses for 1 MHz and with the 8th

and 9th peaks for 3 MHz. For 1 MHz there was a systematic decrease in the velo-

city from the 5th through 9th peaks (% 5 percent decrease). The peaks were

approximately in the center of the pulse, and therefore, should represent attain-

ment of steady-state conditions in the pulse. This decrease in velocity through

the use of different reference peaks should therefore be ascribed to experimental

uncertainty. A measurement of the shear velocity for propagation along the z axis

and displacement at 45 degrees with respect to the x direction yielded a value

of 2.17 mm/jsec at 1 MHz.

For the condition of transverse isotropy, the first three results above

should be identical, and in general, different from the fourth. This is somewhat

illustrated for the 3 MHz data where the results are more consistent and repro-

ducible than those for 1 MHz. However, the data are not consistent enough to

definitely JiSLinguish the transverse isotropy condition from either a more

general symmetry case or from pure isotropy.

However, the data for the GE specimens are more consistent as shown

below:

Propagation Condition Velocity, mm/Psec

(V s,z)x 2.080 + 0.016

(Vs, z)y 2.087 + 0.010

(V ox) 2.107 + 0.011

(vs,x)y 2.167 + 0.030

The data presented above correspond to 1 MHz and a temperature of 18 + 1'C.

It is observed that the condition of transverse isotropy is verified to within

% 1 percent for the velocities (Vs,z)x, (Vs,z)y, and (Vs,x)z . The elastic moduli

in Equation (6) were calculated for the GE specimens using the reported longitu-

dina' velocities of
VZx = 4.101 x 105 cm/sec

V ,z = 3.817 x 105 cm/sec

V ,45= 3.878 x 105 cm/sec

32



AFWL-TR-67-91

as given in Reference (4) at 25*C. The results for the stiffness coefficients

at 25*C are then
l c 12 C 13 c3 3  c44

2.49 1.10 0.82 2.16 0.65

in units of 1011 dynes/cm 2. Because of the accumulative effects arising through

the use of Equation (6), the estimated uncertainties for c11 , c3 3, and c44 are

approximately 5 percent; while for c12 and c1 3 the estimated uncertainties

are % 10 percent.

As shown in Appendix I, a knowledge of the five elastic stiffness

constants in a transverse, isotropic medium allows a prediction of either the

shear or longitudinal velocity as a function of angle of incidence with the

lamination layers. The dependence of the longitudinal velocity with lamination

angle at 3 MHz has been reported in Reference (4) and is reproduced in Figure 16.

In Reference (4) the authors used a semi-theoretical relation derived by Horio

and Onogi (Ref. 14) to explain the velocity dependence shown in the figure.

This curve is given as

1 cos28 sin 2 (T2 2 + - ()

where 0 is the angle between the normal of the specimen surface and the plane

of the layers, and V and V90 are the longitudinal velocities for parallel and

normal angles of incidence, respectively. Equation (7) was found to predict the

velocity at any orientation angle to '\ 2 percent and is represented by the

dashed line in Figure 16.

From Appendix I the relation between the longitudinal velocity and the

angle of orientation in a transverse medium is given by

VZe= [ip ( c11 sin2e + C 33 cos2 6 + 4)

+ #-{[(cii- C4)sin 2 e - ( 3 3 - c'+)cos212 (8)

+ 4 sin
2 O cos 2 O (c1 3 + c 44 )2 1/] 

1/2

where e is the angle between the direction of propagation and the z axis.

Equation (8) was derived for the symmetry condition of transverse isotropy,

and thus, provides a further test of this condition in carbon phenolic.
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Figure 16. Longitudinal Velocity Versus Lamination Angle in Carbon Phenolic.
(The experimental data are from Reference 4.

The solid line is the theoretical prediction of Equation 8.)

As illustrated in Figure 16, there is good agreement between the curve predicted

by Equation (8) and the experimental points. In the figure, the lamination angle

is defined as the angle between the direction of propagation and the plane of

the layers, or the complimentary angle in the notation of Equation (8). The

poorest agreement between the theoretical prediction of Equation (8) and the

experimental data is , 0.8 percent at 60 degrees, whereas the largest separation

between the Horio curve and the data is nu 1-1/2 percent. In addition, the Horio

curve is consistently higher than the actual data, while the data oscillates

about the curve of Equation (8). Figure 16 tends to verify Equation (8), and

hence, the hypothesis that GE carbon phenolic exhibits transverse isotropy to a

high degree.

Figure 17 shows the temperature dependence of the shear velocities in

GE aronphenolic. , s'x)y corresponds to propagation parallel to the layers

with displacement also parallel to the layers. The curve marked (V SZxwa

obtained for the combination of propagation directions perpendicular to the

layers, with displacements in the two orthogonal directions to the propagation.
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Figure 17. Temperature Dependence of the
Shear Velocity in Carbon Phenolic.

Both curves were fitted to a least-squares straight line. The curves for the

shear velocities in mm/psec and T in *C are

(Vszx- 2.12 - (O.0014)T

(Vs,x) - 2.19 - (O.0017)T

The temperature dependence of the longitudinal and shear velocity allows the

determination of the bulk modulus and GrUneisen ratio as functions of temperature.

It is shown in Section IV how the elastic stiffness coefficients can be used to

calculate the adiabatic bulk modulus in transversely isotropic materials. Using

these relations the temperature dependence of the bulk modulus in carbon phenolic

has been calculated and is presented in Table 4. The modulus is combined with

thermal data in Section III to allow the determination of the temperature depen-

dent GrUneisen ratio.
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Table 4

THE EXPANSION COEFFICIENTS OF THE BULK
MODULUS VERSUS TEMPERATURE IN CARBON
PHENOLIC, GE FIBERGLAS AND AVCOAT II

(Temperature range, x 250 to 1000 C)

Bs (1BSN
Material 0,0 T -/oo

(kbars) (kbars/0 C)

Carbon Phenolic 142 -0.136

GE Fiberglas 174 -0.248

Avcoat II 48.4 -0.263

(2) GE Fiberglas

Figure 18 shows the angular dependence of the longitudinal velocity

in GE Fiberglas (abbreviated GEPF; density 1.91 g/cc) as reported in Reference 4.

The data were obtained for 3 MHz wave propagation so that the wavelength was much

larger than the layer spacing (x 45 layers/cm). To apply the technique used for

carbon phenolic, the longitudinal velocities for 00, 450 and 90° lamination

angle are needed. The results at 26 + V0C are (Ref. 4):

V - 4.331 mm/psec

VZ,45 w 3.708 mm/psec

V ,z = 3.319 mm/psec

The results for the shear velocity at 25°C as obtained in the present study are

Propagation Condition Velocity. mm/psec

(V sz)x 1.774, 1 MHz

1.780, 3 MHz

(V ,Z)y 1.765, 1 MHz

1.767, 3 MHz

(Vs x)z  1.893, 1 MHz

1.898, 3 MHz

(Vs x)y 2.106, 1 MHz

2.094, 3 MHz

The standard deviations of all the shear velocities reported above are

approximately 2 percent.
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Figure 18. Longitudinal Velocity Versus Lamination Angle in

General Electric Fiberglas. The Solid Curve

is the Theoretical Prediction of Equation 8.
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Figure 18 shows the results of using Equation (8) to predict the

longitudinal velocity versus orientation angle in GE Fiberglas. The difference

of no 7 percent tn from the other two shear velocities representing c44

indicates that the model of transverse isotropy is not completely valid for GEPF.

However, the resulting curve as shown in Figure 18 is still well within 1 percent

of the experimental data. The Horio curve represented by Equation (7) shows

progressive deviation from the data, particularly for higher lamination angles.

Figure 19 shows the temperature dependence of the shear velocities in

GEPF. Over the range of from 200 to 110C the curves were fitted by least-square

methods to the following equations

( Vsx)y = 2.13 - (8.3 x 10- )T - (2.2 x 10-5)T2

(Vsz)x = 1.79 - (8.9 x 10-')T - (1.6 x 10-5)T2

for the velocities in mm/Psec and the temperature T in *C.

(3) Avcoat II

Figure 20 shows the temperature dependence of the longitudinal and

shear velocities in Avcoat II (density, 1.10 g/cc). This material is similar

to Avcoat 19 reported in Reference 4, with respect to velocity-temperature

behavior. The least-squares fit of the data for the velocity in mm/sec and

the temperature in OC are

Longitudinal: V, = 2.437 - (0.0097)T, 250 to 110 0C

Shear: V - 1.07 - (0.0084)T, 250 to 650C

Table 4 presents the coefficients for the expansion of the bulk

modulus versus temperature in carbon phenolic, GEPF, and Avcoat II. For the

layered materials, the determination of the shear coefficient, c 4, was obtained

by arithmetically averaging the three velocities obtained through the defining

Equation (6). For carbon phenolic the extreme values of the bulk modulus

obtained through the use of ( V s,z)x (Vsz) Y or (Vs'x) z were within 2 percent of

each other. However, for GEPF the extreme values of Bs at 25C were 169 kbars

and 177 kbars. Therefore, the uncertainty in the bulk modulus in GEPF as obtained

through the use of the average value of c44 is about 5 percent due to symmetry

approximations alone.
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Figure 19. Temperature Dependence of the Shear Velocity
in General Electric Fiberglas.

3. Longitudinal and Shear Velocities in Metals and Alloys

a. Magnesium-Thorium Alloy

This mate.ial is one of a recently developed series of heat treatable

magnesium alloys containing thorium and manganese as hardeners.* The compo-

sition of this material varies within the following impurity limits: 1.5 to 2.5

percent thorium, 0.45 to 1.1 percent manganese, 0.3 percent total other

impurities.

The specimens were prepared as 2-inch square blanks ranging in thickness

from 1/4 to 1-1/2 inches. The sample density was determined as 1.771 + 0.006

gin/cc.

The experimental values of longitudinal and shear velocities as a function

of temperature are shown in Figures 21 and 22. The solid curves were obtained

Brooks and Perkins Company, Detroit Michigan; commercial designation, HM21 A,

T-8 condition.
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Figure 20. Temperature Dependence of the Longitudinal

And Shear Velocities in Avcoat II.
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Figure 21. The Variation of the Longitudinal Velocity in
Magnesium-Thorium Alloy to 350*C.
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Figure 22. The Variation of the Shear Velocity in

Magnesium-Thorium Alloy to 225*C.
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by performing a least-squares analysis on the experimental data. In both cases

a quadratic function in temperature fitted the experimental data to within the

accuracy of the experimental data.

For the longitudinal measurements the estimated sum of errors in length

from thermal expansion was + 0.2 percent. The random error in transit time mea-

surement was approximately ± 0.4 percent. Thus, the estimated precision for the

velocity curve is + 0.6 percent, which is consistent with the maximum deviation

of 0.4 percent from the least squares as shown in Figure 21. The variation of

the longitudinal velocity with frequency in this material is less than 0.7 percent

in the frequency range of 1.5 to 10.0 MHz, with the velocity decreasing with

increasing frequency. Some of this variation is due to experimental limitations,

but the trend of the data is consistent with geometrical dispersion in this

frequency range. The curve for the longitudinal velocity versus temperature was

obtained for a frequency of 3.0 MHz. However, since the shear velocity was

obtained for 4.33 MHz waves it was necessary to measure the longitudinal velocity

at this frequency to calculate the various elastic moduli. It was found that

the longitudinal velocity at room temperature and 4.33 MHz was within 0.2 percent

of that for 3.0 MHz.

The elastic moduli were calculated by inserting the least-squares

coefficients for the longitudinal and shear velocities into the appropriate

modulus equations and solving for the new values of the temperature coefficients

of the elastic moduli. The coefficients for all the moduli were limited to

coefficients of the squared term in temperature. This was justified considering

the number of data points and that the coefficients of higher degree terms in

temperature decrease rapidly. The acoustic velocities and the associated

adiabatic moduli in magnesium thorium alloy are given in terms of the temperature

(°C) as*
VZ = 5.749 - (3.99 x 10-0)T - (1.14 x 10- 6)T2

Vt = 3.108 - (1.42 x 10-4)T - (2.59 x 10-6)T2

Bs = 3.55 x 1011 - (4.69 x 107)T

Es = 4.435 x 1011 - (1.42 x 107)T - (6.04 x 105)T2

G = 1.716 x 1011 - (7.99 x 106)T - (2.62 x 105)T2

,s = 0.293 - (6.46 x 10- 6)T - (3.39 X 10-7 )T2

*
Because a shear does not involve a change in volume, there is no difference
between the adiabatic and isothermal shear constant G.
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for the moduli in dynes/cm2 , the velocities in mm/psec, and Poisson's ratio

dimensionless. The expansion of the bulk modulus was limited to the linear term

in temperature because, as Figure 24 shows, this modulus was essentially constant

with respect to temperature variations. A higher order polynomial expansion of

the bulk modulus was therefore not required to fit the acoustic data over this

temperature range.

As previously noted, the estimated uncertainty in the longitudinal

velocity is ), 1 percent. The error in shear velocity has also been found to be

within 1 percent for the type of size samples used here. Hence, the most

probable uncertainties in G, Bs, Es , and a, in whose formulation some accumulation

of error occurs, are 2 percent, 3.4 percent, 2.5 percent, and 8 percent,

respectively. Some of these errors are as large as the variation of the respec-

tive quantity over the indicated temperature range. However, the standard

deviation of the velocity measurements was approximately 0.15 percent, for both

the longitudinal and shear velocities. Using these values of uncertainty, the

uncertainty in predicting the temperature behavior of G, Bs , Es , and a from the

present velocity measurements would be 0.5 percent, 2 percent, 1 percent, and

2 percent respectively.

The temperature dependence of the various elastic moduli is indicated

in Figures 23 and 24. The data reveal that the adiabatic Young's modulus and

shear modulus in this material decrease over the indicated temperature range,

with a curvature which is typical of the behavior in most metals over the

indicated range (Ref. 15). Poisson's ratio increases with temperature, which

is also typical of most metals. The temperature dependence of the adiabatic

bulk modulus is difficult to predict in general and either decreases or increases

with temperature, depending on particular material characteristics. As observed

in this case, the bulk modulus remains essentially constant over this temperature

range.

Fenn (Ref. 16) has measured Young's modulus in this material aq a

function of temperature by static means. His value of 4.48 x l011 dynes/cm 2 at

room temperature is within % 1 percent of the value as obtained here dynamically

(4.43 x 1011 dynes/cm 2 at 25C). This implies that this material behaves as

a purely elastic medium over a large frequency range, i.e., that the stress is

directly proportional to the strain. If a significant difference existed in the

two methods, the results obtained here would be accompanied by high first order

attenuation and second order dispersion, which generally can be explained in

terms of relaxation or retardation times.
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Figure 23. The Temperature Variation of the Sheaai Mouu s
Aouu nd the Adiabatic oison' Raouu in Magnesium-Thorium Alloy.
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Although the correlation may not be exact, it is of interest to compare

the adiabatic moduli as obtained here to the corresponding moduli in pure

magnesium. Fahey (Ref. 17) has investigated the longitudinal and shear velo-

cities in magnesium (density 1.81 g/cc) in the temperature range of from -2320C

to 24*C. His data indicate that over this temperature range, Young's modulus

decreases, the bulk modulus remains fairly constant, the shear modulus decreases,

and Poisson's ratio increases. The magnitude of these quantities as determined

by Fahey at 24C are

E = 4.34 x 1011 dynes/cm2

B = 3.79 x 1011 dynes/cm
2

G = 1.65 x 1011 dynes/cm2

a = 0.308

which are in fair agreement with the present experimental results. Exact agree-

ment cannot be expected because the purity of magnesium is different in the two

cases. However, the data should be similar considering that the material used

here is approximately 97 percent magnesium.

b. Gold

Figure 25 illustrates the temperature dependence of the longitudinal and

shear velocity in gold (density, 18.96 g/cc). The specimens were approximately

99 percent pure, although an analysis of impurities was not performed. The fol-

lowing relations exist between the velocities and temperature for the curves in

Figure 23.

Longitudinal Velocity: V, = 3.292 - (0.00027)T, 250 to 2800C

Shear Velocity: Vt = 1.234 - (0.00016)T, 250 to 170-C

for V in mm/-psec and T in *C.

c. Lead

Velocity measurements were performed on lead using the buffer technique.

The lead specimens were prepared by melting lead brick (% 99 percent lead) and

casting into % 1-inch diameter rods. Varioun thickness specimens were then pre-

pared from the rod. This technique yielded samples which exhibited a significant

number of internal voids. The resulting average density of 11.2 g/cc was % 22

percent lower than the vaiue of 11.4 g/cc as reported in the Handbook of Chemistry

and Physics (46th edition). This degree of porosity did not affect the longi-

tudinal velocity measurements but did prevent reliable shear wave measurements.
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Figure 25. Temperature Dependence of the Longitudinal

And Shear Velocities in Cold.
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The longitudinal velocity versus temperature with the solid buffer is shown in

Figure 26, as obtained from three different samples ranging in thickness from

3 to 9 mm. As shown in the curve there is appreciable scatter. This is probably

due to inhomogeneities within the specimens. The velocity data were fitted to

a least-squares line of the form

V1 = 2.29 - 0.00037T, 250 to 250C

for V in mm/psec and T in *C.

d. Aluminum

Acoustic measurements were performed on two aluminum alloys, 1060 Al

(measured bulk density of 2.703 + 0.002 g/cc) and 6061-T6 Al (bulk density,

2.704 + 0.003 g/cc). The 1060 alloy is essentially pure aluminum (99.6 percent

Al) which exhibits a low yield strength (\ 4000 psi) when used in the annealed

condition, as in the present experiments. The 6061 Al is % 98 percent aluminum

with minor amounts of magnesium, chromium,silicon, and copper. In the T-6

condition this alloy possesses a yield strength of lu 37,000 psi. The uniaxial

stress arrangement described in Section II was used to apply a one-dimensional

stress to % 1-inch cubes of both materials. The longitudinal and shear veloci-

ties were then measured for propagation direction perpendicular to the stress.

This technique allows the determinations of the third-order elastic constants,

if the various wave and displacement vectors are properly oriented with respect

to the symmetry of the specimen and the externally applied stress. The third-

order constants can be used to calculate the pressure derivative of the adiabatic

bulk modulus or to predict anharmonic behavior. This technique is not required

to determine the pressure derivative of the bulk modulus, since the pressure

derivatives of the second-order elastic constants can also be obtained from

hydrostatic pressure measurements on the acoustic velocities. However, this

capability is not available at the Air Force Weapons Laboratory at the present,

so that an attempt was made to determine the pressure derivatives with a uniaxial

stress technique.

Figure 27 shows the dependence of velocity on uniaxial pressure in

6061-T6 Al. The aluminum used for these measurements had been solution heat

treated and artificially aged. Most of the measurements were taken on the speci-

mens after machining and without annealing. The data illustrated in the figure

correspond to shear wave propagation perpendicular to the stress. Since the

degeneracy of the characteristic matrix for the undeformed material is removed
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Figure 26. The Longitudinal Velocity Versus Temperature in Lead.

by application of the uniaxial stress, the two transverse modes have different

speeds. However, as the figure shows, there is a definite scatter of points,

particularly for the shear (11) mode. The six slopes shown in Figure 27 for

this mode were obtained on one specimen by measuring in the two perpendicular

directions for each of the three samples axes. The notation used here corresponds

to applied stress (M), propagation direction (N ), and particle displacement

(Uk) along the three coordinate axes. Considering a precision of ' 1 part in

104 there is a definite separation into at least three different slopes. The

effect was reproducible in that measurements fo: one set of conditions were

reproducible after the specimen had been subjected to various other axial

loadings. The effect was also consistent, since other specimens exhibited a

separation of the shear (ii) mode into approximately the same slopes. Hysteresis

for all the uniaxial measurements was negligible if the maximum stress was kept

below the yield strength. Annealing did not produce a detectable change in the

slopes, but the range of applied pressure was limited because of lower yield

strength.

48



AFWL-TR-6 7-91

1.0020

6061 -T6 AL SHEAR (1)

1.0010- + + +-

R+

01 A ~HEAR (11)

4 M0

0.9960 -

0 2000 4000 6000 8000 10000 12000
PRESSURE, psi

Figure 27. The Relative Change in Transit Time Versus Uniaxial
Stress for the Two Shear Modes in 6061-T6 Aluminum at 250C.

(See the text for the notation used here.)
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The shear (i) mode did not show a noticeable dependence upon the stress

and propagation directions as the shear (1i) mode did. The shear (i) data pre-

sented in Figure 27 were obtained from a number of different specimens and for

different stress directions. All of the data are within 1 part in 104 of the

least-squares lines.

The longitudinal mode gave results similar to the shear (ii) mode, but

was less dependent on sample orientation. Figure 28 indicates the b havior of

velocity with uniaxial pressure for the specimen corresponding to the shear

(i) mode in Figure 27. Although the maximum separation of the longitudinal

pressure-slopes is ^. 6 parts in 104 at 10,000 psi (versus - 3 parts in 103 for

the shear (ii) measurements), this magnitude of variation is well outside experi-

mental uncertainty. The splitting of the slopes was also observed on other

specimens, but the data are omitted from the figure for the sake of clarity.

Table 5 shows the slopes obtained from a least-squares analysis on all data.

The slopes a are calculated from the relation

-1 = 'aP (9)

where the relative transit time to/t is the inverse of the ratios shown in

Figures 27 and 28. The maximum range of slopes is given for the shear (i) mode,

and an average of all sample- ior the shear () mode and longitudinal modes.

The 6061-T6 aluminum used in these experiments exhibited a grain length

of about 1 mm. The material also appeared to exhibit stratification on a micro-

scopic scale. The sample corresponding to the shear (11) mode of Figure 27 and

the longitudinal mode of Figure 28 exhibited apparent stratification approximately

perpendicular to the M1 axis. In some of the other specimens the stratification

appeared at various angles to the specimen axes. However, in these specimens

the variation of the slopes for the shear (1I) mode likewise varied slightly

from that in Figure 27.

Texture on a microscopic scale was probably induced in the material

during initial rolling, which results in a nonuniform distribution of stresses

for an applied uniaxial stress. In any case, the data reported here for uniaxial

pressure would have to be supplemented by other information, such as the pressure

derivatives of the longitudinal and shear velocities under hydrostatic pressure,

in order to reliably calculate the third-order coefficients.
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Figure 28. Relative Change iv Transit Time Versus
Uniaxial Stress for the Longitudinal mode in 6061-T6 Aluminum.

The three separate curves for the shear (i) mode in Figure 27 are what

would be expected if the grain orientation in the specimen was oriented close,

but not exactly parallel, to one of the specimen axes. If the observed splitting

is a result of only this effect, the results shown here could be used to rotate

the coordinate system so that each pair of the three slopes corresponded to the

same value of slope. This would give the necessary angular deviation of the

specimen symmetry from the three principal axes (Ref. 18).

Hetallurgical examination also indicated that the 6061-T6 aluminum used

in the present experiments exhibited a higher impurity and porosity than is

common in this alloy. However, specimens obtained from two different sources

were similar In microscopic detail and velocity variation versus temperature

and pressure.
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Table 5

ELASTIC PROPERTIES OF 6061-T6 ALUMINUM

Density, g/cc 2.704

Longitudinal Velocity*, V., mm/isec 6.428 + 0.002 - (0.0U091 + 0.00001)T

Shear Velocity, Vt, mm/sec 3.188 + 0.003 - (0.00086 + 0.00003)T

Young's Modulus, Es , dynes/cm2  7.35 x 1011 - (4.16 x 108)T

Shear Modulus, G, dynes/cm2  2.75 x 1011 - (1.67 x 108)T

Bulk Modulus, Bs , dynes/cm2  7.51 x 1011 - (1.70 x 108)T

Poisson's Ratio, as 0.336 + (0.00011)T

Gr~neisen Ratio, y, at 25*C 2.139

Uniaxial Pressure Slope, ccm
2/dynes (-1.17 + 0.01) X 10-12

Longitudinal Mode (25*C)

Uniaxial Pressure Slopecs , cm2/dynes (1.04 - 5.36) × 10- 12

Shear (II) Mode (250C) S1

Uniaxial Pressure Slope, a , cm2/dynes ,  (-1.927 + 0.005) x 10- 12

Shear (J) Mode (25-C) st

*Temperature in *C

Figure 29 shows the temperature dependence of the longitudinal and shear

velocities in 6061-T6 aluminum. The measurements were made on a specimen 1.5

inches long (annealed at 400C for v 3 hours) with both 3 MHz quartz and PZT-5

crystals for the longitudinal mode. Both solid lines in Figure 29 correspond

to measurements made along the same specimen axis (which was perpendicular to

the apparent stratification layers). For the longitudinal measurements, the

velocities in both directions perpendicular to this axis were about 0.4 percent

higher, as illustrated by the dashed line. For displacement direction parallel

to a cube edge the 6 different shear modes agreed to within 0.2 percent. The

elastic moduli were calculated from the usual relations for an isotropic medium

and are shown in Table 5 as a function of temperature. The moduli were computed

from arithemetic means of the longitudinal and shear modes, and were calculated

as linear functions of temperature, since the higher order terms were insignifi-

cant to - 2500C.

Figure 30 illustrates the relative change in transit time for all three

velocity modes in 1060 Al. The material used here had been annealed so that

the yield strength was much lower than that in 6061-T6 aluminum. The data were

therefore confined to lower pressures, leading to somewhat reduced accuracy
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Figure 29. Temperature Dependence of the Longitudinal

And Shear Velocities in 6061-T6 Aluminum.
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Figure 30. Relative Change in Transit Time Versus Uniaxial
Stress for All Three Velocity Modes in 1060 Aluminum at 25*C.
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in the slopes. However, as Figure 30 illustrates, the slope for the shear 0 0

mode still appears to be split into two components. In Table 6, the range of

the two slopes for the shear (ii) mode in Figure 30 are listed and all the data

for the shear () and the longitudinal mode are tabulated as single slopes.

Figure 31 illustrates yielding behavior in 1060 aluminum. Both solid

lines correspond to increasing pressure for two previously unstressed specimens.

The dashed line for the shear (i11 mode corresponds to data taken for decreasing

pressure after deviation from the straight line fit is significant. As shown,

appreciable hysteresis is present (,- 3 parts in 104) after yielding occurs;

however, the relaxation slope is approximately the same as that for increasing

pressure before the limit is exceeded. The data for the longitudinal mode were

obtained to 8800 psi (the corresponding relative transit time was 1.0091) and

indicate departure from linearity at a somewhat different pressure than that for

the shear (1) mode. The data for decreasing pressure (not shown) were

essentially linear to zero stress, with a slope of approximately half that for

increasing pressure (the zero pressure value of t/to was 1.00882).

The behavior of annealed 6061-T6 aluminum during yielding was similar

to that for 1060 aluminum. The slope of the shear (1 I) mode in 6061-T6 after
annealing was equal to that before annealing, but departure from linearity

began at v 4400 psi.

The temperature dependences of longitudinal and shear velocities in

1060 aluminum are shown in Figure 32. The data did not indicate a marked depen-

dence of the velocities upon direction of propagation along the axes of the cube

as in 6061-T6 aluminum. Microscopic examination revealed elongated grain size,

but the stratification was less evident than that observed in 6061-T6. The data

in Figure 32 correspond to 3 MHz, but measurements from 2 to 9 MHz indicated

negligible dispersion in this frequency range. Table 6 summarizes the results

on 1060 aluminum.

Table 7 illustrates the equations which relate a linear change in transit

time in an isotropic medium to applied pressure for both hydrosLatic and uniaxial

compression. The third-order coefficients v, V2, and v3 correspond to the

notation employed by Brugger (Ref. 19). All of the coefficients shown in the

table can be calculated from the pressure derivative (P p=o' where Po is the

initial velocity and W is the "natural velocity" (velocity obtained by assuming

no length changes when pressure is applied). The natural velocity is related
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Table 6

ELASTIC PROPERTIES OF 1060 ALUMINUM

Density, g/cc 2.703

Longitudinal Velocity*, V,, mm/psec 6.404 + 0.003 - (0.00100 + O.00003)T

Shear Velocity, Vt mm/usec 3.183 + 0.002 - (0.00079 + 0.00003)T

Young's Modulus, Es , dynes/cm2  7.32 x 1011 - (3.92 x 108)T

Shear Modulus, G, dynes/cm2  2.74 x 1011 - (1.55 x 108)T

Bulk Modulus, Bs, dynes/cm 2  7.43 x 101' - (2.16 x 108)T

Poisson's Ratio, os  0.335 + (0.000094)T

Grineisen Ratio, y, at 25C 2.113

Uniaxial Pressure Slopes, a cm2 /dynes (-1.49 + 0.02) x 10- 12

(Longitudinal Mode (250C))

Uniaxial Pressure Slopes, a , cm2 /dynes (1.55 - 3.42) x 10-12

Shear (II) Mode (250C) SIC

Uniaxial Pressure Slope, a s, cm2/dynes (-2.89 + 0.06) x 10-12

Shear (I) Mode (250C)

*Temperature in 0C

to the actual velocity V(P) at pressure P by

W(P) - Z(o) V(P) (10)

where Z(o) is the initial length and k(P) is the length at pressure P.

P can be obtained from the ultrasonic data as follows

W = W + W'P, W = V

W to0tw t

pV2 /

oW ) P=o = 2p
P 0 0( W)' 2PV 2

o~

= 2wa

where to/t is the inverse ratio of the transit time at pressure P to that at

atmospheric pressure, and a is the slope presented in Tablis 5 and 6.
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The third-order coefficients can then be used to form the pressure derivative

of the adiabatic bulk modulus by

1 B S 9 v + 18v2 + 8v

P/P=o - 9BT  -3 yT (12)

where 8 is the volume coefficient of expansion, y is the Grneisen ratio, T is

the absolute temperature, and BT is the isothermal bulk modulus, defined in terms

of the adiabatic modulus as

BT B(13)
1 + 8yT

Although the pressure derivative Bs can be obtained through the uniaxial

technique, the results are usually not as accurate as those obtained with hydro-

static pressure. This is particularly true of polycrystalline materials where

plastic strain, induced by the one-dimensional stress, can lead to changes in the

transit time larger than the change caused by elastic deformation. The uniaxial

approach is also limited to pressures lower than the elastic limit so that it is

difficult to test the linearity of the bulk modulus versus pressure with this

technique. However, with hydrostatic pressure the symmetry of the specimen is

preserved under pressure, resulting in no change in the relations between the

moduli and velocities. The derivative of the bulk modulus can thus be directly

obtained from the hydrostatic pressure derivatives of the velocities as follows

for an isotropic medium:

BS 0 o (V2 I)
(14)

B 2p (Vto Vji _ 4 V, + 1 + ayT

In Equation (14) the derivative of the actual velocities must be known, so that

it is necessary to know the length change with pressure. Cook (Ref. 20) shows

that the ultrasonic measurement of the compressibility at normal pressure can be

used to determine the corresponding length changes under pressure.

Since the slopes of the transit time curves for the longitudinal mode
and the shear (I) mode are very dependnt upon the directions of propagation

and particle displacement in the present experiments, uniaxial stress measure-

ments are not reliable for determining third-order coefficients, and hence, the
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pressure derivative B through Equation (12) in polycrystalline aluminum.

However, hydrostatic measurements would again 1e useful in this respect, because,

as shown in Table 7, ultrasonic data for hydrostatic pressure would yield two

equations relating to the three unknown third-order coefficients. The slope of

the shear () mode might then be used to calculate the three coefficients. This

approach would only be appropriate to first-order because of the microanisotropy

due to grain texture. The third-order coefficients in aluminum could also be

determined by studying the distortion of sinusoidal ultrasonic waves into higher

harmonics as a function of propagation distance (Ref. 21).

Smith, et al. (Ref. 22) have determined the third-order coefficients in

several polycrystalline metals, including five alloys of aluminum. Most of their

measurements oxn aluminum were made to nu 12,000 psi, which is approximately the

range for the data on 6061 reported here. They did not observe the orientational

effect predominant for the shear (I) mode as observed in the present study.

However, all of their measurements were made for stress parallel to the preferred

orientation (perpendicular to the M axis in this report). Assuming that this

direction of stress and shear propagation along the layers most closely approxi-

mates elastic behavior, the third-order coefficients were calculated from the

reported data on 6061. The results are shown in Table 8 along with the reported

results of Smith (Ref. 22). The aluminum alloys in Reference 22 were of the

following composition:

2S M Al, 99.3%

B53S M Mg, 2.8%; Mn, 0.8%; Cr, 0.1%

B53S P Mg, 2.8%; Mn, 0.8%; Cr, 0.1%

D54S M Mg, 4.5%; Mn, 0.8%; Cr, 0.1%

J1177S WP Zn, 7%; Mg, 2%; Cu, 2%

Table 8

THIRD-ORDER ELASTIC CONSTANTS OF 6061 ALUMINUM

Temperature 2)

Aluminum Density V1  V2 V3
Alloy (g/cc) X 10-2 kbar X 10-2 kbar X 10-2 kbar Bo Source

6061 T6 2.704 -30.1 -13.1 -10.4 8.7 This work

2S M 2.737 -22.8 -19.7 -10.2 9.8 Smith, et al.

B53S M 2.677 -24.9 -9.9 -6.9 7.0 Smith, et al.

B53S P 2.687 -9.3 -15.5 -7.5 6.0 Smith, et al.

D54S M 2.719 -37.9 -19.8 -8.0 12.8 Smith, et al.

J477S WP 2.864 -32.0 -17.7 -10.9 10.6 Smith, et al.
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Alloys B53S M and P (M and P refer to different heat treatments) and

B54S contain approximately the same amount of aluminum as 6061-T6. The third-

order constants of 6061 Al as obtained here fall within the range reported by

Smith (Ref. 22) for the other five alloys.*

Smith reports rather high variation (- 50 percent) for some of the

third-order coefficients. Although the writers did not elaborate on the cause

for this variation, it is probably due to microscopic effects, such as plastic

deformation, as observed in the present study. Most of the variation among the

various alloys listed in Table 8 might then be ascribed to the limitations of

the uniaxial pressure technique in determining third-order elastic coefficients

in polycrystalline aluminum.

The pressure derivative of the bulk modulus as given in Equation (12)

is also listed for each of the alloys in Table 8. The value obtained for 6061

in this study falls within the range reported for the other alloys. However,

the agreement between most of the values and the actual value of n' 5.3 for single

crystal aluminum (Ref. 23) is not sufficient for most applications to equation

of state studies, as illustrated in the next section.

Table 9 lists the temperature coefficients of the adiabatic bulk modulus

for the metals reported in this section. The moduli for lead are omitted,

because shear wave data was not obtained in this case.

Table 9

THE EXPANSION COEFFICIENTS OF THE BULK
MODULUS VERSUS TEMPERATURE IN FOUR METALS

(Temperature rane " 250 to 225 0 C)
Metal BoB) 1o,0

M (kbars) (kbars/*C)

1060 Aluminum 743 -0.216

6061-T6 Aluminum 751 -0.170

Magnesium-Thorium Alloy 355 -0.047

Gold 1670 -0.307

,

Because of the uncertainties associated with plastic deformation observed here
in 6061-T6 Al, the isothermal moduli in Table 7 were approximated as the
adiabatic moduli. For aluminum, this approximation results in an error of

4 to 5 percent.
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SECTION III

THERMAL ANALYSIS

1. Experimental Method

a. Differential Thermal Analysis Techniques (DTA)

The DuPont 900 Differential Thermal Analyzer* was used to establish the

accurate temperatures of transition of the various polymers studied here.

The system is shown schematically in Figure 33. Thermocouples embedded within

a sample and reference capillary measure the difference in temperature between

the sample, S, and an essentially inert reference, R, (powdered glass beads or

powdered alumina), as both are heated in a platinum block by a temperature pro-

grammer and controller. The differential amplified thermocouple output, AT, is

coupled to the y-axis of an x-y recorder and the x-axis is driven by the tempera-

ture, T, of the sample as indicated by the potential across points A-B. The

differential temperature profile, AT, as a function of temperature, T, is an

indication of the energy gains or losses in the sample corresponding to physical

changes within the specimen.

Since precision differential thermal analysis is affected by a number

of environmental factors, proper experimental techniques were employed to correct

or prevent errors associated with (i) particle size and shape differences between

sample and reference, (2) differences in heat capacity and thermal conductivity

of sample and reference, (3) peak area and temperature measurement, and (4) rate

of heating.

Experimentally, the particle size and packing of the sample and reference

were matched as closely as possible to control the magnitude of the initial

temperature change due to differences in heat capacity and thermal conductivity

between the sample and reference.

The two reference materials used for the DTA studies were powdered glass

beads and powdered aluminum oxide (A1203). With the glass beads as reference,

ideal experimental conditions were achieved by diluting the sample with the glass

beads until the thermal conductivities of the sample and reference were similar.

DuPont 400 Differential Thermal Analysis Instrument Manual, Instrument Products

Division, E. I. DuPont de Nemours & Co., Inc., Wilmington, Delaware.
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Figure 33. Schematic Diagram of the Differential Thermal Analyzer.

With A1 20 3 as reference, the weights of sample and reference were matched as

closely as possible and the baseline slope was positioned by manual adjustment

of the AT zero shift on the instrument panel.* The proper reference material

is necessary to prevent shift of the peak area as illustrated by the theoretical

equations of Vold (Ref. 42) in Appendix VI.

Sample size and packing were controlled by using solid cylindrical plugs

(approximately 6 to 15 mg) which were placed in 4 mm/pyrex glass holders and

inserted in the DTA cell. A o:,,dll hole drilled in the top of the sample core

permitted direct contact between the sample and the thermocouple.

Plots of the transition or fusion peak temperatures versus heating rate

of standard samples of tin, lead, mylar, poly 'hylene, and other related materials,

indicated that heating rates of 5*to 10°C/min were satisfactory for all DTA

measurements. Within this rate interval, no shift of peak temperatures nor

Use of the baseline slope has no effect on the value of AT for it provides a
compensating ramp function to return the thermogram baseline to an appropriate
horizontal.
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peak areas were observed (i.e., for these heating rates, the measured thermal

properties were independent of the programmed temperature rate for the size

samples employed here).

To avoid oxidation at high temperatures, all thermograms were obtained

in an atmosphere of dry nitrogen. Liquid nitrogen was used as the coolant to

study polymer characteristics at the lower temperatures.

A DuPont standard cell (-i0 to 500*C) was employed for most of the

DTA studies. When a specific polymer was studied at higher temperatures, a

DuPont high temperature cell (-i0 to 1300*C) was used (Fig. 34).

The characteristic fusion, decomposition, or polymerization temperatures

reported here are the exothermal or endothermal peak temperatures appearing on

the respective thermograms. (The terms used in thermogi-am characterization are

illustrated in Figure 35.) Heats of fusion and transition were calculated from

quantitative measurements of the peak areas associated with the appropriate phase

changes. The application of Vold's equations (Ref. 42, Appendix VI) to the

transition peaks of various standards such as benzoic acid, a-naphthol, silver

nitrate, bismuth, and zinc gave the calibration coefficient, E, of the instrument

as a function of temperature. The comparison of heat of fusion values, AH,

obtained for several standard r rials with values obtained by the differential

calorimetric technique and with values reported in the literature, indicate heats

of fusion or transition acc'-rate to approximately 2 to 5 percent. The greater

portion of the uncertainty associated with a transition is due to errors occur-

ring with measurement of the peak areas (a planimeter was used in the present

.udy to measure peak areas).

The characteristic glass transition temperature, Tg, is due to the onset

of an internal molecular motion and was evidenced in the present study by a

rapid change in the differential temperature between the specimen and reference.

It was determined by extrapolating the two lines indicating the first break in

the DTA curve, or the temperature at which a change in heat capacity or volume

coefficient of expansion occurs. After proper chromel-alumel thertocouple cor-

rections were applied, individual temperature determinations agreed to within

+ 0.2C and to within 2.00 to 4.0C of the values reported in the literature.
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Figure 34. The Cell Used for High Temperature Studies.
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OnsetExtrapolated Onset

Recovery

Equilibrium

Peak

DEFINITIONS

Onset: The temperature at which the thermogram starts to
depart from the base line.

Extrapolated Onset: The temperature corresponding to the
intersection of extrapolations of the base line and
the longest straight-line section of the low-temperature
side of the peak.

Peak: The temperature of reversal.

Recovery: The temperature at which the thermogram returns
to either the same or a different base line.

Equilibrium: The region where the state or form of the sample
before transition is in equilibrium with its state or
form after transition.

Figure 35. Definition of Terms Used in Thcrmogram Characterization.
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b. Thermal Expansion Techniques (TMA)

The DuPont 940 thermomechanical analyzer (TMA) plug-in module for the DTA

was used to measure the coefficient of linear thermal expansion, a, of the various

polymers reported here. The apparatus (Fig. 36) includes a simplified form of a

dilatormeter which makes use of a linear variable differential transformer and

is adaptable to automatic recording of length changes of a specimen versus

temperature.

For a typical analysis, a thermocouple embedded in the bottom of - probe

is positioned on top of a cylindrical sample (approximately 0.25 inch in diameter

by 0.25 inch in height) which rests on a quartz sample holder. Before the run

the test specimen is cooled to the desired starting temperature by a bath of

liquified nitrogen. The DTA module controls the rate of heating and the absolute

temperature of the specimen. As the temperature is increased, sample elongation

raises the probe and the linear change in height of the sample is determined as

a function of temperature. Values of At/0 are then calculated from the measured0

change in the graph absissa At (after suitable calibration) and the initial sample

length Z (the initial specimen lengths were measured with a micrometer at 25*C).

A small correction was applied for the base-line profile of the instrument

to compensate for the expansion of the quartz sample holder. This was done by

obtaining the expansion profile of the sample holder and a sample of standard

(x-cut) quartz, and applying the necessary corrections. The sensitivity of the

instrument was then determined by obtaining expansion profiles of pure aluminum

for which the expansion coefficient is well known (Ref. 43).

Corrected values of W/to,$ adjusted to the adopted reference temperature

of 25.0°C, were used to calculate linear expansions as a function of temperature.

Values are computed for every 50C increment by means of Equation (185),

Appendix VII.

The volume coefficients of expansion, B, and the temperature derivatives,
36

W-,are given in Section III, paragraph 3. The volume coefficient of expansion

of an orientated polymer is about the same as for an isotropic material so that,

B = 3a (Appendix VII). The B values for Avcoat, Avcoat 19, Castable 124, Delrin

Acetal, Foam #20, high and low density polyethylene, Plexiglas, and Teflon were

calculated with this assumption.

ro
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WEIGHT
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THERMOCOUPLE
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Figure 36. Schematic Diagram of the Thermomechanical
Analyzer Used for Expansivity Measurements.

For some of the layered materials the volume coefficients of expansion

were calculated from the relation

S= ai+ 21 (15)

where ais the linear coefficient of expansioa in the z-direction (perpendicular

to the layers) and aiis the expansion in either of the two other orthogonal

directions.

The total probable error for the expansion measurements was calculated

as the square root of the sumptation of all errors associated with each component

of the instrument. The error equation takes the form

T PE 2 7ATU + (,)I + Tr 2

PROBABLE ERROR + (ER) + 1)

E LE T0X- P Tr

Figur 36. chemaic Dagrmo h hemQaia
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where

AE 2 error in measured differential expansion (inches)

E 2 measured expansion (inches)

AL 2 error in measured specimen length (inches)

L E original specimen length (inches)

AQ error in thermal expansion of quartz baseline (inches)

EQ 2 measured expansion of quartz (inches)

AT E error in measured test temperature (*C)

T 2 measured test temperature (*C)

AT 2 error in room temperature (*C)
R
TR room temperature (°C)

For the typical polymers

PE. 0001) 2  (0.001)2 + (0.000122 + (0to5)2PERCENT PROBABLE ERROR =1 -8 \0,-2--/ + 0.1 + (TOO-) +2--

2.52 percent

Graphical representations of the length curves for Avco Phenolic Fiberglas,

chopped nylon phenolic, carbon phenolic, G.E. Figerglas, oblique tapewound refra-

sil, pyrolytic graphite, Rad 60, and tapewound nylon phenolic indicate the

presence of varying degrees of anisotropy. For these materials the coefficient

of expansion values, a, were obtained from cylinders cut parallel and perpendicu-

lar to the stratification layers.

c. Specific Heat Techniques

The latent heat of phase transitions and specific heat data were

obtained with an appropriately calibrated calorimetric cell (sensitivity of 0.2

millical/sec-in.) attached to the basic DTA unit. Thermal data obtained by this

technique supplement the qualitative data obtained with the DTA 900 cell, and

cover the temperature range from 1000 to 700 0C.

The calibration coefficient for a silver sample and the reference holders

was obtained by using A1203 as a standard for which the Cp is known (Ref. 43).

An additional check on the calibration of the calorimetric cell was obtained by

the application of Vold's equation (Appendix VI) to the fusion peaks of several

thermal standards (this technique is identical with that for the differential

thermal measurements).
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Straight line plots were obtained for each sample when sample weight, W,

versus calibration coefficient, E, were graphed. The calibration coefficient for

each temperature was obtained from these graphs. The present limits of accuracy

in the determination of AH are within 3 to 5.0 percent.

The specific heat of the test specimen (solid plug 30 to 40 mg) was

obtained by measuring the temperature lag between sample and reference under

"blank" and "sample" conditions. The absolute values of the differential tempera-

ture between sample and reference resulting from the heat impulse curve were then

substituted into Equation (181), Appendix VII, to calculate c p, Because of a

temperature lag within the cell, the calorimetric peak temperatures are less

accurate (30 to 60C) than those observed with the DTA standard cell; hence, all

reported temperature values were obtained from the DTA measurements.

The specific heat data for the materials studied in the present

experiments are listed in Section III, paragraph 3. Linear least-square poly-

nomial equations are given for the metals and alloys and the straight line

portions of the polymeric curves. The temperature derivative of the specific

heat a-- is also calculated from these equations.

2. Discussion

In Section III, paragraph 3, the experimentally determined differential

thermal analysis curves, and the thermal expansion and specific heat data are

listed and discussed individually for each material studied. The heats of

transition and fusion listed were obtained according to the methods outlined in

Section III, paragraph land are compared to values obtained by other methods.

Because of the existence of an unlimited number of theories defininig the mechani-

cal properties of polymeric materials, an attempt is made here to discuss and

apply some of the proposed theories to the experimentally determined thermal

data.

The effect of a discontinuous change of some property on the thermal

behavior was applied to differential studies by Deeg (Ref. 44) and Houldsworth

and Cobb (Ref. 45). Since these first studies numerous applications have

appeared in the literature with the result that differential thermal analysis

is now accepted as a routine tool to solve basic chemical problems. As verified

from the differential thermograms (Figures 37 through 70), and expansion plots

in Section III, paragraph 2a (Figures 38 through 71), these detectable thermal

changes are associated with the first-order crystalline melt transitions or

second-order glass transitions.
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a. First-Order Transitions

Pronounced first-order transitions were observed in the present study for

highly crystalline materials such as high and low density polyethylene Nylon 6,

Delrin Acetal, polymethylmethacrylate, and polytetraflouroethylene. The melting

thermograms of each crystalline polymer exhibit an endothermic peak corresponding

to the fusion of the crystalline region of the polymer. The position of the

fusion peak was taken as the melting point and the peak area and specific heat

data were used to estimate the heat of fusion of the polymer.

The determination of the heat of fusion, AHf, provided a method to

estimate the percent crystallinity (%C) of several of the polymeric materials.

Since the heat of fusion, AHf, is expressed by

AHf = H - H (16)
f a c

the percent crystallinity wa. estimated from the relation

H - H

%C = a H AH (17)
H -H AHfa c f

where H is the heat content per gram of the partially crystalline form, and

H and H refer to the enthalpies of the amorphous and crystalline regions,a c

respectively. The enthalpy of the amorphous region, Ha, was obtained from

specific heat data well above the melting point at a specified temperature, Tas

whereas, H was obtained from rearrangement of Equation (16).c

The degree of crystallinity was also estimated from specific volume and

expansion studies as described in Appendix VIII.

Since the criterion for crystallization is that the free energy, AFf, of

the crystalline phase must be lower than the free energy of the liquid phase, a

knowledge of the contributions to AFf from these two phases also defines the

degree of crystallinity of the polymer. As the group of molecules in the liquid

state unite to form a crystal, a large amount of heat, AHf, is evolved which is

the result of the tighter association of bonds between the molecules in a crystal

versus those in a liquid. Therefore, materials containing strong intermolecular

hydrogen bonding, such as Nylon 6 and Delrin Aretal, are expected to show large

heats of fusion. (Nylon 6 AHf = 15.2 cal/g; Delrin Acetal, AHf = 39.3 cal/g.)

The entropy of fusion, ASf, defines the lack of order in the liquid which

results in the high entropy values found for this state. Since the change in free
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energy as liquid changes to crystal is given by AFf = AHf - Tf Sf, and since at

the fusion temperature, Tf, crystals and liquid are at equilibrium (AF = 0), the

fusion temperature may be estimated from Tf = AHf/AS f* The observed fusion peak

temperatures listed in Table 10 compare favorably with those calculated from

fusion phenomena.

The variations in Tf for the various polymers studied is generally

attributed to the complicated effects of surface tension, chain ends, and

diluents which lead to a lowering of the fusion temperature below the value

expected for a perfect crystal. It was noted that the fusion temperature was

high if the heat of fusion was large (i.e., high intermolecular attractions),

or if the entropy was low (i.e., material is in a highly crystalline ordered

state).

The highly crystalline materials which gave sharp fusion temperatures

in the present study were Delrin Acetal, chopped nylon phenolic, Nylon 6, high

and low density polyethylene, tapewound nylon phenolic, and polytetrafluoro-

ethylene. The low values of ASf also verify the high degree of crystallinity

present in these materials.

For a polycrystalline material containing crystallites of various

sizes, it is expected that the smallest crystallites will melt at a lower tempera-

ture than the larger ones. This effect may be observed by comparing the thermo-

grams of high and low density polyethylene (Figures 37 and 40). A pronounced

break in the curve at 70*C for the more highly branched low density polymer is

associated with the pre-melt of branched crystallites. The lower AHf and Tf

of this material is attributed to the chain ends which decrease the perfect

packing within the crystal.

The increase in polarity or cohesive density explains the higher

melting points of Nylon 6, polytetrafluoroethylene, chopped nylon phenolic, and

tapewound nylon phenolic. The fusion peak fgr chopped nylon phenolic and tape-

wound nylon phenolic results from the phenolic component of the polymer, wherein

the lamination process lowered the melting temperature T* of the homopolymer.
f

Fusion temperatures of such composite materials may be estimated from

1 _ 1 R/- ff In X (18)
T -To f Af f
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Table 10

FUSION AND DECOMPOSITION PEAK TEMPERATURES FOR THE POLYMERS STUDIED

Fuio Pak Fuio Pak Decomposition Onset
Polymer Fuio Pek Foneak Peak, Decompo-

CC Oset 0C 0C sition. C

Avcoat 1 339 axo., 457 250

Avcoat 19 350 exo., 478 260

Avco Phenolic
Fiberglas 210 exo.,%\440 %100

Carbon Phenolic 225 exo.,%475 %105

Castable 124 320 exo.,
370 exo. .280

Chopped Nylon
Phenolic 255 200 430 %380

Delrin Acetal 75,180 65 349 250

Foam #120 %237 exo.,480 143

Mylar 264 215 455 360

Polyamide (Nylon 6) 225 150 >375, 455 345

Oblique Tapewound

Refrasil 230 exo., 320 120

Polyethylene (HDP) 137 110 .490 -u420

Polyethylene (LDP) 112 40 %t480 400

Polyme thylmethacrylate
(Plexiglas) 375 %280

Polyte trafluorethylene
(Teflon) 25*,30*,329 15,300 560 530

Tapewound Nylon
Phenolic 255 225 434 %360

Crystalline Transition
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wherein the melting point of a polymer composed predominantly of monomer A is

lowered. It is assumed that XA, the mole fraction of the parent polymer, is

interspersed randomly along the chains with the commonomer of mole fraction XB.

Conventionally, the degradation of polymers is studied by thermogravi-

metric analysis, and such TGA studies determine the kinetics of the degradation

by measuring the rate of change in weight at constant temperature. Such studies

are presently being performed on the materials listed in this report. The dif-

ferential thermal analysis curves (Figures 37 through 70) were used to establish

exothermal or endothermal decomposition peak temperatures as illustrated in

Table 10. Examination of the respective thermograms indicates the decompositions

proceed at a slow rate over extended temperature ranges.

In general, the highly crystalline materials were completely vaporized,

whereas Avcoat 1, Avcoat 19, Castable 124, and Foam #20 were decomposed to tarlike

residues. The remaining laminated materials were converted to hard carbonoceous

residues upon decomposition.

b. Second-Order Transitions

The glass transition temperature, Tg, of an amorphous polymer is

significant in that it is the temperature at which a marked increase in molecular

movement gives rise to an incipient change from a rigid solid or glasslike state

to a rubberlike or viscous property. Since this second-order transition tempera-

ture appears as a discontinuity in the first derivative of a primary thermodynamic

quantity, the glass transition temperature may be observed by (1) the change of

dynamic elastic moduli and mechanical damping with temperature (References 46

through 49), (2) the sudden increase in specific heat (References 45 through 50),

in the coefficient of thermal expansion (References 57 through 59), the compres-

sibility (Ref. 60), and the thermal conductivity (Ref. 61). The glass transition

temperatures for the polymers studied were obtained by extrapolating the

transition onset (Fig. 35) appearing on the differential thermal analysis thermo-

grams. The observed transition temperatures were likewise verified by specific

heat and coefficient of expansion studies. For example, the rotational transi-

tion temperature observed for Delrin Acetal, was 40* to 50*C (Fig. 45). This

value agrees well with that obtained from the specific heat versus temperature

(Fig. 46) and the intersection of the extrapolated linear portions of the

elongation versus temperature curve.
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The chemical structure of a polymer is known to have a great effect on

the glass transition. The presence of highly polar groups along the polymer chain

has the effect of increasing the intermolecular forces which pull the chaIns

closer together and reduces the free volume. Comparatively high glass transitions

were observed for polar polymers (e.g., Delrin Acetal and Nylon 6), whereas the

steric effect of the chain substituent groups was found to affect the glass

transition temperatures of composite polymers (e.g., polymethylmethacrylate and

low density polyethylene). For polymethylmethacylate, the stiff and bulky side

groups inhibit free rotation of the chain segments and increase the glass tran-

sition temperature, whereas, the flexible side groups of low density polyethylene

serve to hold the chains apart, free their motions and decrease T • The lowg

glass transition temperatures observed for high and low density polyethylene

(-120*C) represent hydrocarbons which have very weak intermolecular forces.

Sharp glass transition temperature were observed on the DTA

thermograms and expansion plots of Castable 124 (Fig. 51), Foam #20 (Fig. 53),

and polymethvlmethacrylate (Fig. 44). Glass transition temperatures of approxi-

mately 340C, 200C, 500C, -120*C, -122oC, and 450C, respectively, were estimated

for Avcoat 1 (Fig. 48), Avcoat 19 (F',. 50), Delrin Acetal (Fig. 45), high

density polyethylene (Fig. 37), and Nylon 6 (Fig. 42).

In some instances, it was difficult to identify the glass transition

temperature because of the high degree of crystallinity. It is known that

since the glass transition is defined as the relaxation of chain segments in

the amorphous region of the polymer, the observed differential temperature change

would be smaller for crystalline materials.

The inability to observe glass temperatures for the laminated materials

was expected. because in fabrication the plasticizing fibers dissolve in the

high polymer and lower the glass temperatures or prevent their formation.

Werner (Ref. 62) has shown that most plasticizers have glass temperature in the

range of from -50*C to -150*C.

The glass transition of copolymers may have two transition temperatures,

one close to the valle of T for each homopolymer. If the composition by weightg
for a series of copol~mers is plotted against T , a straight line joins theg
temperatures of the two homopolymers (References 63, 64, and 65). The glass

transition temperature of the copolymer is given by
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1 1 W+ 2 (19)
F~~w q2 T ~-+-- T 19

) g, g2 J

where W1 and W2 are the weight fractions of the two monomers with transitions at

T and T in *K, and X is a constant.

The rapid rise in the heat capacity curve at the glass transition

temperature denotes a second-order transition extending over a small temperature

range, AT, with a heat of transition given by the integral JACp dt where Ac is

the excess in heat capacity at the transition. Specific heat data for the metals,

alloys, and polymeric materials are listed in Section III, paragraph 3.

The heat capacity of most plastics is about 0.3 to 0.4 cal/gC. On a

mass basis this is considerably more than that of most metals, but the lower

density of plastics makes their specific heat on a volume basis less than that

of the metals and alloys. Heat capacity data may have small errors due to traces

of precuring or evaporation of moisture. Values of the heat capacity of a resin,

per monomer unit, can be estimated roughly from additive atomic specific heat

values. For polyethylene, (-CH2-CH2-)n, the estimated value of 0.50 cal/g*C was

obtained from the specific heat of 1.8 for carbon and 2.3 for hydrogen, thus

C = [2(1.8) + 4(2.3)]/28 = 0.50 cal/g*C

This is within the experimentally reported values of 0.4 to 0.5 cal/g°C, as

shown in Section III, paragraph 2c.

c. Thermal Expansion

The increase in expansion due to an increase in heat is the result of

strains or thermal stresses within the polymer. In accordance with Hooke's law,

the axial strain, E, originating within the molecule as a result of a temperature

stress, aT' would be

a T o
M

0

where 2 and 2. refer to the stretched and unstretched sample, respectively, ato

a temperature, T, and M is an effective elastic modulus. The variation of the

axial strain, tor the elongation per unit temperature change is discussed in

Section III, paragraph 3 for several of the polymers. These values are related

to the linear coefficient of expansion, a(AT) as shown in Appendix VIII.
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Many polymers are known to undergo minor secondary transitions

(References 66 through 70) but the true nature of these transitions are not

clearly understood and in some instances are extremely difficult to identify.

Alfrey (Ref. 71) associated the transitions with the restricting (or freezing)

of rotational degrees of freedom in polymer chain segments. Boyer and Spencer

(Ref. 72) presented evidence that these transitions are associated with kinetic

phenomena and attribute the transitions to the existence of a relaxation spectrum

corresponding to an isoviscous state. This study does not attempt to define the

nature of the transitions, but it does verify the existence of such transitions

from calculations of the coefficient of thermal expansion through small tempera-

ture intervals (see Section III, paragraph 1, and Appendix VII). Computer plots

of the data thus calculated were obtained by adjusting the span between the

5-degree temperature intervals so that only the most significant transitions

were prominent. Plots of the coefficient of expansion, a, (Figures 38 through 71)

illustrate the presence of these secondary transitions. The values obtained for

T and the additional secondary transitions are tabulated in Table 11 andg
discussed individually for each material.

Table 11

GLASS TRANSITION (T) AND ADDITIONAL SECONDARY

TRANSITION TEMPERATURES OF POLYMERS STUDIED

Densit 0C 0C
Polymer rTmj  Tg ~ Tsc

8/cm 9sec

Avcoat 1 1.10 34.0 -50,160

Avcoat 19 1.07 v20.O -50,130

Castable 124 1.23 37.8 -10

Chopped Nylon Phenolic 1.68 40.4 -65

Delrin Acetal 1.43 -40

Foam #20 0.33 137.5 -40,40

Mylar 1.41 70.0 -80

Polyamide (Nylon 6) 1.14 48.0 -20,/6

Polyethylene (HDP) 0.97 >-ii0.0 -20,70

Polyethylene (LDP) 0.92 >-ii0.0 -20,70

Polymethylmethacrylate (Plexiglas) 1.19 112.0 -25,10,175

Polytetrafluoroethylene (Teflon) 2.19 -78,50

Tapewound Nylon Phenolic 1.21 40.0 -45
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An elastic-plastic material has both elastic and plastic strains.

This state is typical of most of the polymers studied. In the elastic region,

the effect of temperature on strain is twofold; first, to cause a slight modifi-

cation in the values of the elastic constants, and second, to produce a strain

even in the absence of an external mechanical stress.

The thermal strain, cT is the strain due to the temperature change

expressed as

CT = a(T - To) (21)

where T refers to a reference temperature.
o

The strain, E,, due to stress is related through a modulus to the

stresses imposed on the surface of the material--the origins of such stresses

may be thermal or may be forces applied to the object's external surface. (See

Appendix VIII for derivation of equations.) Therefore, when an element is sub-

jected to a thermal load, the total strain, C, in the material can be considered

in two parts: (a) the strain, e., due to a molecular stress, and (b) the strain,

CT, due to the change of temperature in the material itself

CC i +CT C + aT (22)

A rigid solid would have insignificant strains due to molecular stresses,

regardless of the applied thermal strain, C,. Therefore, at low temperatures,

the total strain, C, is expected to be small since the thermal expansion is

generally small. At the glass transition, both strains contribute to the

increased values of C.

Polytetrafluoroethylene (Teflon) is considered to be a rigid plastic

material for molecular strains are said to be insignificant.

The volume coefficient of expansion was calculated as mentioned in

Section III, paragraph 1, and Appendix VIII. Isotropic, molecular oriented, and

fibrillar materials were examined and are discussed in Section III, paragraph 3.

The molecular oriented and fibrillar arrangements represent low entropy states

for the application of heat resulted in disordered masses of higher entropy.

The high degree of anisotropy present in these materials depends on the fiber

alignment along the main axis of the polymer and the degree of lateral or axial

expansion of the fiber as well as of the parent polymer.
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3. Experimental Results

a. Thermal Properties of Common Plastics

(1) Polyethylene High Density (HDP)

This material is a thermoplastic resin of very long, nearly

branchfree chains made by the polymerization of ethylene. Elemental analysis

indicates 86.0 percent carbon and 14.0 percent hydrogen, and a calculated density

of 0.967 g/cm3.

The DTA thermogram (Fig. 37) yields an endothermic peak at the

melting point (Tf = 134.5*C) which agrees well with values given in the litera-

ture (Ref. 73). The glass transition temperature (below -110C) is beyond the

range of the instrument. Decomposition occurs at approximately 492*C. Secondary

transitions at < -110C, -20*C, and 70*C were noted by a change in slope on the

DTA thermogram; hoqever, these transitions were more clearly identified by the

thermal expansion plots (Fig. 38). Kline, et al. (Ref. 74), Oakes and Robinson

(Ref. 75), and Schmieder and Wolf (Ref. 76) report peaks at -120*C, -25*C, and

70*C which they observed upon measuring the shear moduli damping factor G"/G'.

These peaks were identified as alpha, beta, and gamma. The gamma transition

refers tc the main glass transition at -120*C, which is said to be due to long

CH2 sequences in the amorphous phase containing the branch points or co-monomer

units. The alpha phase at approximately 70*C is attributed to the crystalline

phase of the polymer. Nielsen (Ref. 77) has shown that this phase may be cor-

relatea with the size of a crystallite or the length of the polyethylene

sequences in a crystallite. Nuclear magnetic resonance studies by Rempel, et al.

(Ref. 78) also indicate that the alpha phase is related to motion in the crystal-

line phase. The thermomechanical analyzer does not permit the study of crystal-

linity except in jo far that the crystalline (alpha) transition temperature of

the sample is shifted by previous heat treatments.

Table 12 lists the linear coefficient of thermal expansion as a

function of temperature. The agreement with earlier work on polyethylene is

satisfactory (References 79, 80, and 81).

Heat capacity data derived by fitting linear least-square equations

to experimental data gave the information listed in Table 13. The equations

define all the transitions present in polyethylene.



AFWL-1R-67-91

AT - 10 OC/inch

POLYETHYLENE (0.967 /crM3 )

-120 -100 -80 -60 -40 -20 0 +20 +40

I p , p IIII

50 100 150 201) 250 300 350 400 450 500
TEMPERATURE, -C

Figure 37. Differential Thermogram of High Density Polyethylene.
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Figure 38. Expansivity Versus Temperature for High and Low Density Polyethylene.
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Table 12

LINEAR THERMAL EXPANSION DATA FOR HIGH DENSITY POLYETHYLENE

Temp.iOai 0/ /ioC x 10S noC

-100 7.688 20 12.680

-90 8.021 30 14.704

-80 7.854 40 18.613

-70 8.021 50 22.822

-60 8.187 60 26.431

-50 8.819 70 31.340

-40 9.019 80 32.249

-30 9.119 90 38.059

-20 9.984 100 43.068

-10 10.683 110 50.453

0 11.282 120 54.979

10 12.347

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range *C I A x 105 (oC)- B x 106 (OC)-2

25 to 100 2.976 + 0.953 3.91 + 0.14

Table 13

HEAT CAPACITY DATA FOR HIGH DENSITY POLYETHYLENE

(Cp m a + bT)

Temp. Range C a cal/g*C b x 103 cal/goC 2  j Av Error of c 102

-100 to + 50 0.3689 1.54 0.82

50 to 125 0.2800 3.38 0.97

125 to 137 -5.9970 53.59 1.19

137 to 175 8.0974 -40.27 0.89

200 to 325 0.8007 -0.05 1.08

325 to 362 1.1991 -1.32 1.71

362 to 440 -0.0478 2.13 0.70

440 to 492 -18.5400 43.68 11.03

475 to 510 45.3293 -0.89 43.38

510 to 540 0.8106 -1.53 48.99
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In this and following tables some of the intercept values of cp are

negative. This is not to imply a negative value of cp, but simply results from

extrapolating about 00 C. This point was chosen as the intercept in temperature

because of the ease of expressing the linear least-squares coefficients over

different temperature intervals.

Examination of the heat capacity as a functi, n of temperature over the

entire temperature range studied (Fig. 39) shows that the average specific heat

of the solid at -200C - 500C is 0.395. The extrapolation of this straight line

to 350C would eliminate all melting point heat effects and yield a heat capacity

for the liquid (along the dashed line in Figure 39) of 0.539 cal/g*C. These

values agree well with the data reported by Wunderlich (References 82 and 83)

for the annealed solid sample and the liquid. The heat capacity begins to rise

above the extrapolated straight line at about 300C, but the sharp increase is

noted at 120*C. Most of the melting occurs within a 250 temperature range.

According to Inoue (Ref. 84) the calculated enthalpy of fusion, AHf, of

high density polyethylene is 60.2 cal/g for a material with a density of 0.988

g/cm 3. Our value of 58.8 cal/g determined from the area measurement of the

fusion curve is in excellent agreement with materials having similar densities.

The entropy of fusion, ASf, calculated thermodynamically (AS = AH f/T )
was 0.044 cal/g*C. Using Inoue's value (Ref. 84) of 64.8 cal/g as the heat of

fusion of the crystalline region, AHc, a calculated value of 90.7 percent crystal-

linity was obtained from

AHf
x AH

c

where AHf was the observed heat of fusion and AHc that of the pure crystalline

material. The high degree of crystallinity obtained (90.7 percent) indicates

that polyethylene crystallizes readily due to the simplicity of the size of the

repeating (-CH2-) unit.

(2) Low Density Polyethylene (LDP)

• -This material is polymerized ethylene which is of lower molecular

weight than the high density sample. Differences in physical properties between

high and low density polyethylene are greatly influenced by the density (crystal-

linity) and the molecular weight (melting point) which are the result of the

increased branching present in the low density polymer. The sample studied had

a calculated density of 0.922 g/cm3 .
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Examination of the differential thermogram (Fig. 40) indicates a

fusion peak at 112*C with a slight shoulder at approximately 700C. The latter,

not evident on the thermogram of HDP (Fig. 37), is attributed to unfolding of

branched chains in the amorphous region and may be correlated with the size of

a crystallite or the length of the polyethylene sequences in a crystallite

(References 74, 74, 76, and 85).

The heat capacity of low density polyethylene is about 0.599 cal/g*C

at 200C. As the temperature is raised, the heat capacity increases, reaching a

value of about 1.220 cal/g*C at 90°C and 1.900 cal/g*C at 112 0C. These results

indicate a disordering of the structure of the solid beginning below 500C, and

becoming increasingly marked as the temperature is raised and culminating in a

relatively sharp change to a liquid structure at about 1120C. Linear least-

squares equations for the heat capacity are given as Cp = a + bT where the

constants take the values indicated in Table 14.

Table 14

HEAT CAPACITY DATA FOR LOW DENSITY POLYETHYLENE

(Cp a + bT)

Temp. Range a cal/g0C b x 103 cal/gOC2  Av Error of C x 102

-100 to +25 0.5473 1.98 0.24

25 to 80 0.3741 7.95 0.25

90 to 112 -1.4983 29.15 7.81

112 to 130 10.7919 -71.23 1.53

137 to 220 0.8719 0.43 1.52

225 to 300 1.2013 -1.07 0.47

300 to 375 0.4167 1.52 0.60

390 to 430 -0.7545 4.57 1.02

440 to 485 -24.0177 57.36 5.32

The thermal expansion studies (Table 15 and Figure 38) clearly

define secondary transitions at < -1l0 °, -20° , and 700 similar to the high

density polymer.
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Figure 40. Differential Thermogram of Low Density Polyethylene.
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Table 15

LINEAR THERMAL EXPANSION DATA FOR LO!v DENSITY POLYETHYLENE

TnC Ia x 105 in/inTC I a x 105 in/inC

-100 8.046 10 19.332

-90 8.558 20 20.530

-80 8.728 30 24.085

-70 9.410 40 37.267

-60 9.751 50 50.448

-50 10.433 60 57.630

-40 11.456 70 96.761

-30 12.786 80 77.304

-20 13.467 90 222.195

-10 18.616 100 297.077

0 19.025

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range OC A x 105 (oC)-l B x 106 (oC)-2

-100 to -40 13.23 + 0.32 0.00 + 0.54

-35 to -15 17.40 + 0.87 1.63 + 0.3

-10 to 20 19.03 + 0.06 0.00 + 0.47

30 to 60 886.00 + 3.93 11.38 + 0.85

60 to 75 -132.60 + 59.01 31.12 + 8.71

75 to 80 322.50 + 176.30 56.08 + 22.77

80 to 100 -946.50 + 180.80 126.40 + 20.03

The observed heat of fusion, AHf = 32.9 cal/g, calculated from heat

capacity measurements agrees well with the value of 33.6 cal/g obtained for a

similar material by Raine, Richards, and Ryder (Ref. 86). This leads to a thermo-

dynamic entropy value of ASf = 0.29 cal/g*C as opposed to the value of 0.04

cal/g0 C obtained for the high density polymer. The lower heat of fusion or the
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higher entropy value is attributed to lower intermolecular attractions, or

decreased crystallinity evident in the low density polymer as a result of the

increased number of branches present.

The observed crystallinity (see discussion on high density

polyethylene for method of calculation) of 50.8 percent compares favorably with

other reported values (References 87 and 88).

A heat of decomposition of AH = 122.3 cal/g was obtained by the

differential thermal technique. This value is subject to instrumental errors

and will be verified by thermogravimetric studies. The observed decomposition

temperature (Fig. 40) was 480*C.

(3) Polyamide (Nylon 6)

This material is a long chain polyamide which is a linear

condensation product of caprolactam [NH 2 - (CH2) 5 - CO -]. The calculated density

of the polymer was 1.14 g/cm in which the repeating unit is
[(CH 2)5 - CO - NH -IX"

The thermogram trace presented in Figure 41 exhibits well-defined

peak positionsand peak areas. The sharp fusion peak temperature at Tf . 2250C

was taken as the true melting point, whereas, the irregular peak above 345*C

indicates decomposition. The sharp, long fusion peak postulates a high degree

of crystallinity and/or orientation.

Nielsen (Ref. 73) and Coffman, et al., (Ref. 89) report a second-

order glass transition at 50*C. Figure 42 illustrates a similar peak on the

thermal expansion versus temperature curve. This second-order transition is not

associated with any latent heat; rather, the first derivative of the enthalpy

(the specific heat) changes suddenly at this temperature. The transition is

attributed to motion of large chain segments in the amorphous regions (References

90 and 91).

The small transition at -20*C (Fig. 42) is said to represent the

onset of segmental motion involving one or more amide groups in the amorphous

regions which are not directly hydrogen bonded to other amide groups in the

adjacent chains (Ref. 92). This peak was not seen on the DTA thermogram

(Fig. 41).

Figure 41 shows that decomposition occurs above 345*C with a double

decomposition peak occuring at 't 3850C. Schwender and Zuccarello (Ref. 91)
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Figure 41. Differential Thermogram of the Polyamide, Nylo~n 6.
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interpret this small endotherm as resulting from random hydrolytic scisson which

is followed by degradation with a peak temperature at approximately 455*C.

The heat capacity data defining the important transitions present

in Nylon 6 may be represented as cp = a + bT. Individual values of a and b are

shown in Table 16. The data verify the glass iransitional temperature at 46*C

and the melting temperature of 225*C. The graph of the original data clearly

define the peak at 385*C as observed by Schwender and Zuccarello (Ref. 91) with

the decomposition peak at nu 448*C. The solid polymer heat capacity could be

expressed by the first entry in Table 16 so that the corresponding entalpy for

the solid would be

H0o - H_I00o = 0.3716T + 5.0 x 10-' T
2

The polymer is said to be in a rubbery phase from 50* to 175*C

for which AH becomes

H1 750 - H50 0  = 0.4039T + 7.60 x 10
- 4 T2

The liquid region of the polymer would exist from ".' 2600 to 350*C for which AH is

H3500 - H2 60 ' - 0.5318T - 0.85 x 10- 4 T
2

The heat of fusion determined from the measurements of the fusion

peak area was AHf = 15.2 cal/g. Inoue (Ref. 84) has shown the linear relationship

between the heat of fusion and the crystallinity to the density. For the pure

crystaline material, he gives an extrapolated value of 45.6 cal/g which agrees

well with the value reported by Dole and Wunderlich (Ref. 93). For a material

of density 1.14 g/cm 3 , similar to the experimental sample used in this study,

a value of 15.8 cal/g was reported for Hf, which is in excellent agreement with

the value of 15.2 cal/g reported here. The calculated crystallinity for this

sample was 30.0 percent. Table 17 lists the thermal expansion data for the

polymer.

(4) Polytetrafluoroethylene (PTFE)(Teflon)

Teflon is a highly crystalline linear polymer (density 2.186 g/cm
3)

which is resistant to change in heat at relatively high temperatures. Elemental

analysis of the sample showed 76.0 percent fluorine and 24 percent carbon.
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Table 16

HEAT CAPACITY DATA FOR NYLON 6

(c = a + bT)

Temp. Range *C a cal/g*C b x 103 cal/goC 2  Av Error of C x 102

-100 to 0 0.3716 1.00 0.20

-0 to 46 0.3640 2.74 1.78

50 to 200 0.4039 1.52 0.90

200 to 224 -4.9492 0.28 10.01

224 to 265 5.5194 -0.19 5.22

270 to 350 0.5318 -16.68 0.62

Tab le 17

LINEAR THERMAL EXPANSION DATA FOR NYLON 6

Temp. C a x 105 in/in*C Temp. *C a × 105 in/in*C

-100 5.02 60 31.90

-90 5.30 70 23.08

-80 6.24 80 18.54

-70 6.25 90 15.36

-60 5.93 100 15.12

-50 6.60 110 14.88

-40 6.25 120 14.64

-30 5.90 130 14.41

-20 5.97 140 14.15

-10 7.08 150 13.96

0 8.01 160 13.70

10 7.82 170 16.08

20 9.06 180 25.58

30 11.01 190 35.08

40 23.98 200 34.59

50 40.12

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range *C A x 105C - 1  B x 106oC- 2

30 to 50 -40.57 + 7.06 16.14

60 to 75 77.79 + 7.13 -7.80

80 to 160 17.48 + 1.02 -0.24

170 to 200 -145.50 + 15.20 9.50
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The DTA thermogram (Fig. 43) shows a first-order transition at 230C as

observed by Rigby and Bunn (Ref. 94). A slight indication of the order-disorder

transition at 30C was also noted on the DTA thermogram. This transition was

confirmed by Quinn, Roberts, and Work (Ref. 95) and from specific heat measure-

ments made by Furukawa, McCoskey and King (Ref. 96); Bridgman (Ref. 97) and Weir

(Ref. 98) studied the transition at high pressures. X-ray studies (References

94 and 99) indicate no new well-defined crystal structure is revealed above 20 C,

but only a disorientation or weakening of the structure that exists below 20°C.

Marx and Dole (Ref. 100) have ascribed a heat of transition of 1.96

cal/g to the 20C transition and 0.40 cal/g to the 30*C transition. In this study,

the total heat capacity for the internal transition calculated from the measure-

ment of the area under the curve with a polar planimeter gave AHTR- 1.90 cal/g,

which is in exiellent agreement with the above. It is assumed that this value

was due to the 20C transition as postulated by Marx and Dole (Ref. 100). The

failure of the 30*C transition to appear for this specific study may have been

because of the machining of the sample. The heat generated at this time prevented

the reoccurrence of the 30C transition.

Thermal expansion data (Table 18 and Figure 42) verify the existence

of the 20*C transition. The expansion at 20C is approximately 58.4 percent

higher than that at 50*C.

The sharp endothermal peak at 329*C (Fig. 43) corresponds to the

melting transition reported by Roff (Ref. 101). This peak is followed by an

exothermal process with a major endothermal decomposition beginning at ' ' 530*C.

The decompositioni peak temperature (TD = 560 0C) is said to be due to free radical

depolymerization of the polymer. Further thermogravimetric studies should define

this region in greater detail.

The experimental heat capacity was fitted to linear least-squares

equations and may be expressed as indicated in Table 19.

The calculated enthalpy of fusion obtained by measuring the area

under the curve at 328*C was 10.1 cal/g; when added to the value at 20*C, gives

an overall value of 12.0 cal/g. The heat of fsion of polytetrafluoroethylene

has been calculated using PVT data and the Clapeyron equation; the published

values vary from 9.8 cal/g for the quenched sample to 14.2 cal/g for the

powder (References 102 and 103).
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Table 18

LINEAR THERMAL EXPANSION DATA FOR TEFLON

pOiC a x 105 in/inC Temp. C n x 105in

-100 7.80 60 10.06

-90 8.66 70 10.13

-80 9.42 80 13.05

-70 8.96 90 16.48

-60 9.12 100 22.89

-50 9.36 110 26.48

-40 9.72 120 25.02

-30 9.79 130 26.99

-20 10.05 140 24.14

-10 10.24 150 22.39

0 10.60 160 20.31

10 13.09 170 20.26

20 21.62 180 19.07

30 9.55 190 18.97

40 9.16 200 18.97

50 8.99

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range *C A x 100C-1  B x 106 oC 2

15 to 35 38.39 + 3.48 -9.14

50 to 90 -14.60 + 1.48 4.51

130 to 200 23.20 + 1.67 -0.21

Heat capacity dita for the temperature interval 3450 500*C give

a corresponding enthalpy of tusion of 12.67 cal/g. Adding this to the enthalpy

obtained at 200C, a total enthalpy of 14.59 cal/g is acquired, which agrees to

within +6.5 percent of Lupton's value (Ref. 104) and to -5.8 percent of the

value calculated by Douglas and Harman (Ref. 105).

Comparison of thermal studies of Teflon with high density poly-

ethylene indicate that thermal stability is enhanced by substitution of hydrogen

atoms by fluorine.
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Table 19

HEAT CAPACITY DATA FOR TEFLON

(Cp = a + bT)

Temp. Range *C a cal/g*C b x 101 cal/g0 C Av Error ofCplO2

-100 to 0 0.1915 33.72 0.13

0 to 20 0.1909 1.31 0.52

20 to 30 0.0904 5.81 0.38

30 to 45 0.3679 -3.56 0.61

50 to 290 0.2003 17.00 0.30

300 to 329 -0.1538 1.35 0.27

330 to 345 -3.5635 11.77 1.88

345 to 355 0.9874 -1.49 0.81

360 to 425 0.5390 -26.98 0.33

(5) Polymethy Methacrylate (PMMA)(Plexiglas)

Plexiglas (density 1.19 g/cm 3) is a rigid thermoplastic acrylic

resin produced by the polymerization of monomeric derivatives of methacrylic

acid [CH 2 - CCH 3 - COOH]. The molecular chain is relatively large in the trans-

verse section and there is evidence it occurs largely in the coiled configuration.

Every second carbon of the chain is asymmetric with resulting d and

X arrangements randomly located along the chain. This random arrangement of the

-CH3 and -COOCH 3 groups above and below the chain results in a completely noncrys-

talline polymer because space-volume or steric effects are not conducive to

crystallization. The noncrystalline character of Plexiglas is verified by the

thermogram of Figure 44 for which no fusion peak was evident; the latter is

characteristic of crystalline or semicrystalline polymers. The main glass tran-

sition occurs at 115*C; a broad secondary transition is seen from 00 to 60*C.

The expansion plot (Fig. 42) clearly defines the latter at 50*C.

A similar second-order transition was reported by Becker (Ref. 106)

and other investigations (References 76, 107, 108, and 109). Nielsen (Ref. 87)

has measured the dynamic mechanical properties of PMMA, and reports a broad

secondary transition at around 50C with no distinct drop in the modulus.

Heydeman and Grucking (Ref. 107) have noted also that this transition was not

affected by hydrostatic pressure while the glass transition temperature was found
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to shift by about 0.018*C/atm. The general conclusion from the above referenced

materials is that the transition at ^- 60*C is attributed to the motion of the

side group (-COOCH 3), which becomes mobile at a lower temperature than the

main chain.

The thermogram of Figure 44 shows that decomposition is indistinct,

with the greatest amount of decomposition occurring at 375'C. Fox, et al.,

(Ref.ll0) and Cowley and Melville (Ref. 111) have demonstrated that thermal

degradation is important at 150*C where extensive depolymerization occurs.

Linear thermal coefficient of expansion data are listed in Table 20.

All values increase with an increase in temperature, and c values above the glass

transition are doubled over those occurring below. There was no outstanding

change in the expansion from 60°C, however, its variation with temperature from

00 to 100*C is greater than is expected for a rigid polymer.

The linear description of the isobaric specific heat as a function

of temperature is given from -100o to 200*C. Values above this temperature were

nonlinear because of the extensive degradation of the polymer. The constants for

the equation C, N a + bT) are defined in Table 21.

The compressibility change, AX, and expansivity change, Aa, at

the glass transition temperature, Tg, may be used to determine the effect of

pressure on T by Ehrenfest's law (Ref. 112) which states that
g

dT_T AX 1
dP AB 7B

where B is the bulk modulus. Using a value of 58.6 x l09 dyne/cm2 for AB

and 52.2 x l0-5 in/in*C for Aa, the change in T may be expressed byg

dT -- dP = 3.27 x 10- 8 dP
g AB

it is known that the glass and secondary transitions cause a stepwise increase

of the thermal expansivities and the isothermal compressibilities. Above the

glass transition, both expansivities and compressibilities rise in proportion

to the temperature.
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Table 20

LINEAR THERMAL EXPANSION DATA FOR PLEXIGLAS

p C a x 105 in/inTC Tep C x 10 5i/in0C

-100 2.395 60 7.627

-90 2.564 70 8.092

-80 2.807 80 8.557

-70 2.888 90 9.021

-60 3.239 100 9.486

-50 3.391 110 13.616

-40 3.407 120 26.899

-30 3.205 130 18.545

-20 4.420 140 17.875

-10 4.690 150 17.172

0 5.844 160 17.101

10 5.305 170 17.172

20 5.533 180 17.242

30 6.234 190 17.242

40 6.698 200 17.241

50 7.163

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Tep ag C I A x 105 °C- 7 B x 106 oC-2

100 to 1000 4.840 + 0.199 0.465
50 to 1200 -4.450 + 12.25 5.283

(6) Delrin Acetal (DA 500)

This high molecular weight material is a highly crystalline stable

form of polymerized formaldehyde, sometimes referred to as an acetal resin

because of the repeating oxymethylene units (-OCH2)n in the polymer structure.

Hammer, et al., (Ref. 113) define the polymer as linear rather than branched

because of the high degree of crystallinity. The observed density of 1.43 g/cm 3

closely approaches the density of 1.51 g/cm 3 for the pure crystalline material.
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Table 21

HEAT CAPACITY DATA FOR PLEXIGLAS

(c = a + bT)

Temp. Range *C a cal/g*C b x 103 cal/gOC 2  Av Error of c x 102

-100 to 45 0.1974 1.76 1.17

45 to 78 0.1578 3.05 0.56

78 to 112 0.2878 1.42 0.54

112 to 130 -0.0328 4.27 1.20

138 to 150 0.6376 -0.60 0.21

150 to 166 0.4264 0.82 0.38

166 to 200 0.4249 0.92 0.59

The melt endothermal peak at 180°C (Fig. 45) is preceded by a break

at 75C which is attributed to the onset of rotational vibrations. A secondary

transition observed on the expansion plot (Fig. 46) at -40*C is said to be due

to the motion of the (- 0 - CH2 - 0 -) group. The pronounced transition is not

considered to be the glass transition temperature, since the T of highly crystal-g
line materials should occur at lower temperatures. Linton and Goodman (Ref. 114)

observed a similar increase in ductility in the 600 to 80*C temperature range

from stress-strain studies.

Heat capacity and linear coefficient of expansion plots (Table 22

and Figure 46) show identical breaks or transitional regions at 750 and 150*C.

This is expected since the frequency coefficient (f - d log v/dT) and the expan-

sion coefficient (8 - d log v/dT) is equal to the GrUneisen ratio. Further

applications to the GrUneisen ratio will be discussed in Section IV, paragraph 1.

The linear least-square heat capacity equations may be used to

define the various regions of interest. For the solid polymer below 50*C the

equation takes the form

Cp = 0.2384 + 1.00 x 10- 3 T

where the average error in the Cp value is + 0.39 x 10 - 2 cal/g°C.

The 500 to 700 region may be given as

e = 0.1904 + 2.11 x 10-3T

where the error in cp is 0.02 x 10- 3 cal/g 0C.
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Figure 45. Differential Thermogram of Deirin Acetal (DA 500).
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Table 22

LINEAR THERMAL EXPANSION DATA FOR DELRIN ACETAL

Tep C a x 105 aC Temp. C a x 105 oC

-100 5.30 30 6.75

-90 6.21 40 6.76

-80 6.45 50 8.20

-70 661 60 21.66

-60 6.80 70 24.70

-50 6.70 80 2'4.79

-40 6.42 90 20.19

-30 5.87 100 18.56

-20 6.20 110 17.43

-10 6.31 120 17.82

0 6.43 130 18.99

10 6.54 140 19.15

20 6.66 150 20.90

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range C A x 105 oC- 1 T B x 106 *C-2

25 to +25 6.43 ± 0.070 0.115

30 to 35 6.74 + 0.017 0.002

55 to 85 12.06 + 7.721 1.600

125 to 140 15.54 + 1.526 0.243

The liquid polymer may be described by the heat capacity data

obtained above the melting point, Tf. Tn equation form this becomes

p - 0.8659 - 1.48 x 10- 3T

where the average error in c is + 0.14 x 10-2 cal/g*C.

Since the change from the solid to the liquid phase is carried

out reversibly at constant temperature and fixed pressure at the fusion
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temperature, TfV the enthalpy of fusion, AHft may be expressed directly from

heat capacity data (Appendix VII) as

Acpf = AHf = 44.805 - 22.43 x l0-2Tf

where Acp c 'p (solid)f - ep (liquid/f at the transition temperature, Tf = 1800C.

Solution of the above equation gives Alf - 41.1 cal/g. The heat of Fusion esti-

mated from the planimeter measurement and summation of peak areas occurring at
750 and 180*C, respectively, was 39.8 cal/g. Both methods yield values which are

in excellent agreement with the value of 41.5 cal/g reported by Inoue (Ref. 84)

for a material density of 1.421 g/cm3.

Using the value of AH = 58.7 cal/g (Ref. 84) for the purec

crystalline form, a calculated percent crystallity of 70.0 percent was obtained

from %C - AHc /AHf , where Alf refers to the experimentally determined heat of

fusion obtained in this study. The resulting thermodynamic entropy of fusion

ASf = 0.22 cal/g indicates disorder brought about by the unfolding of branched

chain segments in the amorphous region.

(7) Mylar

Commercial polyethylene terephthalate (density - 1.41 g/cm 3) in

film form was studied to determine the effects of thermal treatment. For the

calorimetric studies, the mylar film (0.005 in. thick) was cut into strips 0.5

inch wide and wrapped around the thermocouple. Annealed samples were obtained

by heating the film directly in the cell 100 to 200 above the melting point

(Tf . 264*C) and then cooling at a rate of 0.5*C/min.

Careful examination of the thermal record trace (Fig. 47) shows a

glass transition at \, 70*C, followed by a sharp melting endotherm at 264*C.

Decomposition begins at approximately 360*C with a decomposition peak at

approximately 455*C.

Because the area under the thermogram peak is directly proportional

to the amount of heat accompanying the transition, the heat of fusion, AHf,

could be estimated by determining the peak area and comparing it with the melting

peak area of benzoic acid for which the heat of fusion of the latter is 33.9

cal/g (Ref. 115).

The estimated AHf, thus obtained was AHf = 13.8 cal/g which was in

excellent agreement with values obtained by Ke (Ref. 116). Cobbs and Burton
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(Ref. 117) have found that a sample having a measured density of 
1.4 g/cm3,

corresponds to 60 percent crystallinity. Using this value, the true heat of

fusion of the crystalline form would be 13.8/0.60, or 23.0 cal/g.

Curve 2 (Fig. 47) is the crystallization exotherm of the polymer.

This was obtained by heating the sample to approximately 200 above its melting

point and then permitting it to crystallize slowly at a rate of 3*C/min.

Comparison of the area under this curve, Ac, with that of the area of the fusion

peak, Af, permits one to estimate the percent crystallinity as

A
Percent Crystallinity - X 100 (23)

A2f

The area ratios thus obtained were 0.620 . 60 percent.
1.0334 60pret 13.8al .00

The thermodynamic fusion entropy, ASf, was .8 cal/ . 0.05
A~f.2640C

which indicates a well ordered crystalline structure.

Since the thermomechanical analyzer requires samples 0.23 inch in

length no expansivity measurements were attempted on the film.

b. Thermal Properties of Polymers and Laminated Materials

(1) Avcoat

This material is a light epoxy polyamide (density 1.10 
g/cm 3) which

is used as an insulator, and has a tendency to become very soft and visibly

distorted under moderate pressure. The DTA thermogram (Fig. 48) shows a secon-

dary transition at approximately -50*C, followed by a pronounced glass-transition

temperature at 34*C. The great increase in viscoelastic character at the glass-

transition temperature made it difficult to prevent the probe penetration of

the sample at T . Since the expansion proceeds normally 20 degrees beyond theg

glass transition temperature, the values of Table 23 were extrapolated to obtain

the corrected values at T • It is assumed that the typical glass-transitiong

temperature associated with polyamides (T Z 50*C) has been lowered by the

plasticizing effect of the epoxy. The secondary transition at 160*C is probably

due to the evolution of gaseous decomposition products. The decomposition onset

at 275 0C (Fig. 48) leads to a peak temperature of approximately 350C, which is

interrupted by a break at approximately 330*C, and is related to the decomposition

products evolved at this temperature.
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MYLAR (141 g /cm3)
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Figure 47. Differential Thermogram of Polyethylene Terephthalate (Mylar).

NCOAY 1 0 10 91cm31
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Figure 48. Differential Thermogram of Avcoat 1.
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Table 23

LINEAR THERMAL EXPANSION DATA FOR AVCOAT 1

Temp. 0C a x 105 *C Temp. 0C ax 105 OC

-100 5.91 60 19.85

-90 6.08 70 19.58

-80 6.25 80 19.98

-70 6.42 90 20.35

-60 6.58 100 20.11

-50 6.89 110 20.18

-40 6.50 120 20.24

-30 6.99 130 20.31

-20 7.47 140 20.37

-10 7.96 150 21.10

0 9.22 160 20.57

10 9.10 170 20.83

20 10.34 180 21.42

30 13.86 190 20.21

40 16.04 200 20.22

50 18.74

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range C A x 105 oC- 1  j B x 106 oC- 2

-40 to 15 8.441 + 0.18 0.48

15 to 35 3.307 + 0.98 0.35

60 to 200 19.47 + 0.35 0.06

The linear coefficient of expansion values (Table 23) vary from

a low value of 5.9 x 10-5oC to 20.8 x 10-5 0C at 2000 C. These values agree well

with expansion values presented by Morgan and Overall (Ref. 149). The expansion

curve (Fig. 49) closely resembles that of Avcoat 19. The linear least-square

equations (Table 23) were obtained from straight line portions of the expansion

curves and were used to calculate the Gr~ineisen ratio of Section IV-I.
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Table 24

HEAT CAPACITY DATA FOR AVCOAT 1

Cp = a + bT)

Temp. Range 0C a cal/g*C b x 103 cal/gaC 2  Av Error of Cp x 102

-100 to 0 0.2786 0.62 0.23

20 to 60 0.2319 3.13 0.59

65 to 150 0.3750 0.85 0.35

160 to 270 0.5558 -0.28 0.62

275 to 347 1.6654 -4.29 0.99

347 to 400 -2.2343 6.75 3.64

400 to 425 0.4015 0.19 0.56

Heat capacity measurements were made on the original solid without

previously annealing the sample to verify the secondary transitions observed by

the thermal expansion studies. Linear least-square equations were fitted to

the straight-line portions of the data given in Table 24.

Examination of the plot of heat capacity versus temperature showed

on increase from 300 to 160'C followed by a rapid drop to a minimal peak at

" 350*C. The latter corresponds to the decomposition exotherm observed in the

DTA studies. The broad glass transition interval at 150 to 35*C was therefore

more clearly defined by the thermal expansion studies.

The total heat capacity of the decomposition as determined in the

present experiment described the heat of decomposition, AHD, as

cp :X -3.8997 + 1.04T - AHD

where the error in the Cp is + 0.03 cal/g*C. (See Appendix VII for derivation

of equations.)

Heat capacity values were greatly affected by the previous heat

treatment of the sample. It was observed that the heat associated with the

machining of the sample caused heat capacity values to differ by approximately

40 percent in the region above the glass transition. The Cp data listed above

were obtained from a chip cut manually from the original sample. All machining

of the sample was avoided.
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(2) Avcoat 19

This material is a light green elastomeric epoxy resin (density

1.07 g/cm 3). Avocat 19 is similar to Avcoat 1 in that it has a tendency to

become soft and distorted at moderate temperatures; however, no evidence of probe

penetration of the sample was evident during the expansion studies.

The glass transition temperature (Tg W 20*C), which was slightly

lower than that observed for Avcoat 1, was clearly defined on the DTA thermogram

(Fig. 50). The latter also defines a decomposition onset temperature at 2600C,

and a decomposition peak temperature at approximately 478*C. The irregular

decomposition curve (Fig. 50) indicates the evolution of decomposition products

which will be verified by thermogravimetric studies.

Thermal exp nsion data (Table 25 and Figure 49) agree well with

those obtained by Morgan and Overall (Ref. 149). Although the expansion profiles

of Avcoat 1 and Avcoat 19 are similar, linear coefficient of expansion values

for the latter are approximately 1 x 10-5 in/in*C greater than those of Avcoat 1

over the entire temperature range studied. This may be the result of the slightly

higher density of the Avcoat 1 sample, which would result in a smaller volume,

and hence, a smaller thermal expansion value.

Eiermann (Ref. 118) has shown that the thermal conductivity of

amorphous high polymers is mainly determined by the behavior of the van der Waals

bonds. From the force constants for the bonds, he derived a relationship between

the break in the thermal conductivity and in the thermal expansion curve at the

glass transition expressed by

AL ~ -5.8 AB (24)

where the first term in the equation is the increment of the relative temperature

coefficient of the thermal conductivity, and AB is the increment of the coef-

ficient of cubic thermal expansion at the second-order transition temperature.

Eiermann found that this relationship is independrnt of the substance and of the

temperature, and that all polymers attain a val.e of -1.3 to -1.5% *C-1 for

S ()]. For Avcoat 19, the increment of the coefficient of cubic expansion,

66, was found to be 2.37 x 10- 4 in/inOC at the glass transition interval.

Equation (24) gave a value of -1.38% 'C-1 for the increment of the relative

temperature coefficient of the thermal conductivity. This calculated value

is in good agreement with the experimental results mentioned above.
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Figure 49. Linear Coefficient of Expansion Versus
Temperature for Avcoat 1 and Avcoat 19.
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Figure 50. Differential Thermogram of Avcoat 19.
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Table 25

LINEAR THERMAL EXPANSION DATA FOR AVCOAT 19

Temp. °C T ( 105C Temp. °C Fa × 105oC

-100 6.51 60 20.15

-90 6.86 70 20.03

-80 7.17 80 20.00

-70 7.38 90 20.01

-60 7.87 100 20.05

-50 7.91 110 19.80

-40 8.92 120 20.09

-30 9.97 130 21.00

-20 10.44 140 19.80

-10 11.41 150 19.20

0 11.87 160 19.10

10 12.21 170 18.90

20 13.26 180 18.99

30 16.78 190 19.21

40 19.52 200 19.21

50 20.08

Polynomial Fit for Coefficient of Expansion

(a A + BT)

Temp. Range °C J A x 105 OC-1 J B x 106 oC- 2

-25 to 20 11.87 + 0.15 0.717

20 to 45 8.307 + 1.38 2.83

40 to 100 19.67 + 0.45 0.04

135 to 200 20.17 + 1.43 -0.10

Heat capacity data may be represented by Cp = a + bT, where the

constants a and b are given in Table 26. As observed from this data, the heat

capacity increases approximately 40 percent through the glass transitional

region (100 to 400 C). In the same temperature interval a relative specific

volume increase of approximately 39 percent was noted from expansivity

measurements. The small differences in the percentages may be due to the dif-

ficulty in defining the exact boundaries of the transition.
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Table 26

HEAT CAPACITY DATA FOR AVCOAT 19

(c =a +bT)

Temp. Range *C a cal/g-C b x 103 cal/gaC 2  Av Error of cp x 102

-100 to -20 0.2795 1.05 0.15

-20 to 40 0.2988 3.48 1.67

45 to 100 0.4165 1.18 1.13

105 to 175 0.4504 0.83 0.73

200 to 340 1.2215 -3.02 2.95

(3) Castable 124 (C-124)

Castable 124 is a discolored opaque epoxy with a density of

1.23 g/cm 3. Elemental analysis of the sample gives 66.0 percent carbon, 25.3

percent oxygen, 7.11 percent hydrogen, 1.26 percent phosphorous, and 0.33 percent

nitrogen.

The glass transition temperature (Fig. 51) at 37.8°C is much lower

than that of the foamed epoxy (Foam #20, Tg a 137*C). At approximately -100 C

a slight indication of secondary transition occurs, which is attributed to the

"freezing in" of chain segments.

Instead of a melting endotherm, there occurs at a peak temperature

of 320*C a small exotherm leading to the major exothermic peak at 370*C. The

presence of these exotherms suggests the formation of volatile decomposition

products. The use of a visual cell likewise indicated sample darkening at this

temperature. The slight upward shift of the DTA baseline after 400*C (Fig. 51)

suggests loss of weight in the sample at the exothermic reaction. Further

thermogravimetric studies will verify this assumption. An estimated heat of

decomposition of 25.2 cal/g was derived from a calculated value of 1.75 cal/g

for AH at 320°C and a value of 23.5 cal/g for AH at 370*C. Numerical values for

AH were obtained by measuring the areas under the curve and .pplying the equations

of Appendix VI.

The graph of the linear coefficient of expansion (Fig. 52) was

obtained from the expansion data listed in Table 27. The glass transition

temperature at 37.8C was clearly defined as well as a secondary transition
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Figure 51. Differential Thermogram of Castable 124.
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Figure 52. Expansivity Versus Temperature Profiles of

Two Epoxides. (Castable 124 and Foam #/20).
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at -10*C. These transitions were verified by heat capacity data, which may be

represented by the equation, Cp = a + bT, where a and b are constants defined

by the expressions in Table 28. The data show a rapid rise after the glass

transition temperature (Tg = 37.8°C) to 80C where the heat capacity decreases

slightly until the decomposition onset at approximately 280*C.

Table 27

LINEAR THERMAL EXPANSION DATA FOR CASTABLE 124

Temp. 0C a x 105 0C Temp. 0C a X 105 0C

-100 5.21 60 28.49

-90 4.40 70 19.14

-80 5.30 80 18.83

-70 4.60 90 18.25

-60 4.95 100 17.55

-50 5.59 110 18.16

-40 5.09 120 17.83

-30 5.59 130 18.29

-20 5.76 140 18.46

-10 4.89 150 19.28

0 7.81 160 19.63

10 7.76 170 19.94

20 10.98 180 19.90

30 31.47 190 19.86

40 52.78 200 20.02

50 45.19

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range *C A x 105 OC-i B x 106 oC-2

-100 to -5 6.517 + 0.50 0.202

30 to 45 -0.3388 + 20.77 12.49 + 5.48

50 to 70 110.6 + 7.45 -13.41 + 1.23

75 to 200 16.80 + 0.50 0.161
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Table 28

HEAT CAPACITY DATA FOR CASTABLE 124

(cp = a + bT)

Temp Rage°C a cal/g°C I b x 103 cal/g*C2  Av Error of C P × 102

-100 to -50 0.2982 0.71 0.05

-50 to -12 0.3104 0.95 0.08

-10 to 35 0.3175 1.41 0.35

37 to 65 0.1954 4.57 0.60

70 to 80 0.5636 -0.93 0.14

90 to 255 0.4291 -0.08 0.39

(4) Epoxy Foam #20

DuRaFoam EA* is a prefoamed block of thermosetting resin. This

material is an epoxy-based formulation with a density of 0.325 g/cc, which has

a fine-cell, uniform, nondirectional structure. The epoxy base used in these

foams is Epon 834**, which is a glycidyl polyether of a dihydric phenol having

an epoxide equivalent weight of 225 to 290 (Ref. 119). This rigid material is

completely free from grain and is characterized by excellent machinability and

dimensional stability.

The main curve features obtained for the foam (Fig. 53) are

identified as: (1) the second-order glass transition, Tg, at 137°C which is

manifested by a well-defined downward shift in the baseline, reflecting an

increase in the heat capacity of the polymer, (2) polymer curing--as indicated

by the small exothermic curve beginning at approximately 200 0C, and (3) polymer

fusion, represented by the endothermic curve with a peak temperature at 380 0C,

followed by decomposition at approximately 430*C.

The presence of an exothermic reaction in an inert atmosphere

suggests the formation of secondary decomposition products due to the formation

of new covalent bonds.

The high T value indicates a rigid amorphous stable polymer whichg

softens to a flexible rubber-like material in the glass transitional region.

DuRaFoam is a registered trademark of D&R Pilot Plants, Inc., Hazardville, Conn.

**
Epon 834 is a registered trademark of Shell Chemical Co., Emeryville, Calif.
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A repeated run through the glass transition temperature shows a gradual shift

in the T . Wunderlich and Bodily (Ref. 120) have proposed that the configuration

of Tg is governed by the rate at which the polymer is cooled.

Values obtained for the thermal expansion (Table 29) show a two-

hundred and fifty-percent increase in the expansion at the glass transition over

that obtained at room temperature.

The linear heat capacity data which best describe the experimental

data are given by the expressions for a and b in Table 30.

The plot of the linear thermal expansion, a, versus temperature

(Fig. 52) shows a minor secondary transition at -40*C and +40*C, with the glass

transition clearly defined at 137.5C. Failure of the expansion plot to return

to original expansion values observed below the glass temperature indicates a

rearrangement of crystallites.

(5) Avco Phenolic Fiberglas (APFG)

This material is a phenol-formaldehyde thermosetting resin laminated

with glass fibers. The fibers form a regular weave pattern with the resin binder

resulting in a density of 1.71 g/cm 3.

AT 0 2 OC/ir

0

-bI0C -80 -60 -40 -20 0 20 40

AT -10 "eln

AT =05

w0FOAM #20 (0 325 q/cm 3 )

50 100 150 200 250 300 350 400 450 500
TEMPERATURE, 'C

Figure 53. Differential ThermogLdm of Foam #20.
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Table 29

LINEAR THERMAL EXPANSION DATA FOR FOAM #20

Temp. "C a xx 105/'C.C a x 105/C

-100 3.66 60 4.83

-90 3.66 70 4.42

-80 3.72 80 4.35

-70 4.23 90 4.63

-60 3.89 100 4.88

-50 4.27 110 5.07

-40 4.73 120 6.00

-30 4.75 130 6.10

-20 4.77 140 14.98

-10 4.79 150 13.90

0 4.11 160 12.89

10 4.42 170 12.67

20 4.24 180 12.48

30 4.30 190 11.33

40 4.37 200 11.41

50 4.73

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range *C A 105 oC- B x 10" 0C- 2

-20 to 40 4.806 + 0.11 .02

60 to 80 4.885 + 1.13 -.06

95 to 130 1.643 + 0.77 .34

40 to 200 23.200 + 1.58 -.62

No significant transitions (Fig. 54) were observed from -i00° to

125'C, except the thermogram exhibited a steady rise in baseline, indicating an

increase in heat capacity. The change in slope after 125*C may be attributed to

phenol melt within the polymer. Partial decomposition occurred at temperatures

greater than 400*C, with a decomposition peak at approximately 440'C.
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Table 30

HEAT CAPACITY DATA FOR FOAM #20

(C a +bT)

Temp. Range 0C a cal/g 0C b i 03 cal/gCC 2  AvErr I 0

-100 to -40 0.1884 1.44 0.47

-40 to +20 0.2147 2.17 0.21

20 to 88 0.1323 6.14 1.16

88 to 100 1.0526 -4.64 0.05

100 to 137 0.3202 2.67 0.04

137 to 145 -0.1896 6.40 0.02

145 to 155 -1.2083 13.38 0.55

155 to 170 1.0814 -1.37 0.22

175 to 210 0.5363 1.87 0.33

C C/

-120 -100 -80 -60 -40 -20 0 20 40 60

AVCO PHENOLIC FIBERGLAS (171 q 1cm 3)

0 50 100 150 200 250 300 350 400 450
TEMPERATURE, -C

Figure 54. Differential Thermogram of Avco Phenolic Fiberglas.
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Linear thermal expansion measurements made in two directions,

horizontal and vertical to the weave pattern, are given in Table 31 and graphed

in Figures 55 and 56. The change in slope of the horizontal expansion, a I,

(Fig. 55) at 1100C is almost completely eliminated for the vertical expansion,

ai (Fig. 56). This illustrates the efficiency of the weave pattern in streng-

thening the material and preventing the probe penetration of the sample. Due to

the lack of information concerning the fiber diameter and length, no attempt will

be made to define the amount of expansion resulting from the matrix and the fibers.

Fiber alignment along the main axis is said to account for

differences in thermal expansion noted for Avco Phenolic Fiberglas (APFG),

GE Phenolic Fiberglas (GEPF), and oblique tapewound refrasil (OTWR). The expan-

sion in the "C" direction (elongation parallel to the weave) (a l) follows the

order
OTWR < APFG < GEPF

over the entire temperature range studied. The exception at 2000% where GEPF

APFG < OTWR is attributed to the probe penetration of the sample, which makes it

impossible to obtain an accurate expansion measurement for APFG at this

temperature. The linear extrapolation of a,, from 10000 would give values in

agreement with the above. The larger diameter of the glass fibers present in

APFG accounts for the slightly lower expansion values than those observed for

GEPF. As seen in Figure 55, the narrow fibers of GEPF were more efficient in

increasing the overall strength of the polymer, because it was much easier to

obtain expansion data for this material.

At low temperatures, the expansion in the "a" direction (elongation

perpendicular to the weave) (a1 ) follows the order

APFG < GEPF < OTWR

which reverts to OTWR < APFG < GEPF at higher temperatures. At low temperatures,

the regular tight weave patterns of APFG and GEPF are effective in lowering the

expansion values over Lhose of OTWR; however, at higher temperatures, the

increased concentration of the glass components of APFG and GEPF contribute

greatly to the overall expansion values.

The heat capacity data were fitted to linear least-square equations

and may be expressed as cp = a + bT, where the constants are defined in Table 32.

The heat capacity for the entire temperature range (-i00* to 4500 C) may be

expressed by cp = 0.2169 + 3.14 × 10-4T wherein, the average error in the heat

capacity is 1.87 x 10-2 cal/g*C.
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Table 31

LINEAR THERMAL EXPANSION DATA FOR AVCO PHENOLIC FIBERGLAS

Temp. 0C a, x 106/C Ill i0 15/C Temp. 'C a, x 106/°C all X I05/°C

-100 -0.34 1.58 60 2.34 2.86

-90 -0.34 1.61 70 1.34 2.89

-80 -0.34 1.72 80 1.33 3.09

-70 -0.34 1.75 90 1.00 3.03

-60 -0.34 1.88 100 2.67 3.16

-50 -0.34 1.92 110 2.67 3.43

-40 -0.34 2.02 120 1.34 3.02

-30 -0.20 2.02 130 3.00 2.28

-20 -0.10 2.25 140 4.65 2.18

-10 1.34 2.26 150 3.67 2.08

0 1.00 2.22 160 4.01 1.82

10 1.34 2.18 170 7.34 1.55

20 1.67 2.22 180 6.34 1.88

30 1.34 2.22 190 6.01 2.25

40 2.34 2.49 200 8.00 2.55

50 2.34 2.55

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range 0C A x 105 °C- 1  B x 106 C- 2

Parallel expansion, a1

-100 to 100 2.352 + .01 .08

110 to 170 6.468 + .50 -.30

175 to 200 -4.520 + .48 .36

Perpendicular expansion, a1

-100 to 200 0.272 + .03 .03

116



APWL-TR-6 7-91

8o

*70

*s 60

50

0

1 0.

S30

20 GP

-

Z

S30

40

-120 -80 -40 0 40 80 I20 160 200
*1 EMPERATURE, 'C

Figure 55. Linear Coefficient of Expansion Profiles for Avco Phenolic
Fiberglas, G.E. Phenolic Fiberglas, and Oblique

* Tapewound Refrasil (all, Parallel to Axis)

40

2-,

aH

-80 -40 " 40 80 2 10 0

1117



AFWL-TR-67-91

Table 32

HEAT CAPACITY DATA FOR AVCO PHENOLIC FIBERGLAS

(C = a + bT)

Temp. Range °C I a cal/g*C b 103 cal/g*C2  Av Error cpX 102

-100 to 80 .2231 0.44 0.14

80 to 325 .2311 0.21 1.02

325 to 450 1.1341 0.60 1.77

Examination of the data shows a heat capacity of approximately 0.235

cal/g*C at 250C which increases to 0.329 cal/g*C at 320°C. The heat capacity

expected for a phenol-formaldehyde resin at room temperature is % 0.4 cal/g*C,

whereas, that of glass is l 0.12 cal/g°C. The experimental values obtained may

be explained by the Kopp-Neumann law (Ref. 121), which states that the molecular

heat of a compound is the sum of the atomic heats of its ccnstituents. In equa-

tion form this becomes

C P(P) = a6 (M)] + b[cp(F)]

where a and b refer to the molar concentration of the heat capacities of the pure

matrix, [y(M)], and fibers [c,(F)], respectively. The term [cp(P)] refers to

the heat capacity of the resulting polymer.

Differentiation and integration of the heat capacity data above

gave the corresponding enthalpy values for the transition regions below 210C as

(H00C - H_ 1000C) 0.2150 T + 2.09 x 10 - 4 T2

and

(H2 100C - H 200C) 0.2178 T + 4.55 x 10-4T2

The corresponding entropy values may be expressed as

(s 0 o - S_ = 0.2150 ln T + 2.09 10 -4T

(S210oC - S200C = 0.2178 in T + 9.09 X 0-4T

(6) G. E. Phenolic Fiberglas (GEPF)

The polymer, made from a glass fabric sheet impregnated with a

thermosetting resin, shows a regular weave pattern and has a density of 1.91 g/cc.

Compared to Avco Phenolic Fiberglas (APFG) the fibers appear to have a smaller
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diameter, and hence, a t'ipiter weave. Specification data include: 35.06 percent

oxygen, 30.8 percent carbon, 14.87 percent silicon, 8.14 percent calcium, 4.29

percent aluminum, 2.44 percent hydrogen, and 1.86 percent boron, plus other

impurities.

The DTA thermogram (Fig. 57) is similar to all phenolic resins in

which a slight exotherm at 2370C falls into a valley with a minimum at approxi-

mately 425*C. The decomposition peak at approximately 237*C is associated with

the phenolic component of the resin. Decomposition is completed at a peak

temperature of approximately 480*C.

The linear expansion plot (a1 , Fig. 55) indicates a slight
exotherm temperature range of from 40* to 125C which is probably due to the

melting of the phenol component. A deviation of + 2.0 percent was noted for the

expansion values in this region. As discussed previously (see data for APFG)

the binding nature of the fibers cause expansion parallel to the weave to be

larger than the perpendicular expansion (see Table 33 and Figures 55 and 56).

The total heat capacity of the polymer can be well represented by

the equation, C. - a + bT, where the constants a and b have values for the

various temperature ranges as shown in Table 34. From the data it can be seen

that the heat capacity increases linearly to 350*C where the values seem to level

off to a constant value of approximately 0.35 cal/g°C. After 450*C they continue

dropping to a minimum peak of nu 0.066 cal/g*C at 480*C. Since the heat capacity

values are considered to be additive functions of the individual constituents

within the polymer, the data are in accord with what was expected for phenol-

formaldehyde glass fiber reinforced systems.

(7) Oblique Tapewound Refrasil (OTWR)

This material is a Monsanto SC 1008 phenolic resin (35 percent by

weight) laminated with a high silica leached glass fabric (65 percent by weight).

The reinforcement contains t boron impurity (0.023 percent) and the tape layup

is at an angle of 23 degrees. Additional specification data include: density,

1.54 g/cm 3 ; porosity, 6.29 percent; 42.96 percent oxygen, 32.35 percent silicon,

22.6 percent carbon, 2.06 percent hydrogen, and 0.03 percent boron (Ref. 122).

The DTA thermogram (Fig. 58) indicates a slight maximum at a peak

temperature, Tp - 235*C, dropping into the characteristic phenolic valley at a

minimum of approximately 400*C.
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Table 33

LINEAR THERMAL EXPANSION DATA FOR G. E. PHENOLIC FIBERGLAS

Temp. C 01i x 106/CC all x 105/oC Temp. 0C 1 × 106/0C 1 H 05/0C

-100 3.95 1.53 60 7.01 3.46

-90 4.17 1.60 70 6.01 3.74

-80 4.01 1.73 80 7.23 3.95

-70 6.67 1.73 90 7.25 4.15

-:O 5.34 1.80 100 7.35 4.34

-50 4.67 1.90 110 9.02 4.45

-40 5.31 2.00 120 8.68 4.50

-30 5.67 2.03 130 11.01 4.56

-20 5.77 2.13 140 11.68 4.89

-10 6.01 2.16 150 12.35 5.12

0 5.01 2.16 160 12.01 5.39

10 5.90 2.36 170 12.68 5.82

20 6.25 2.40 180 13.35 6.39

30 7.34 2.73 190 13.68 9.38

40 8.01 2.99 200 14.68 26.58

50 8.01 3.10

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range °C A x 105 C-1 B x 106 C2

Parallel expansion, a1

-100 to 30 2.29 + .03 7.825 + .01

40 to 170 2.28 + .10 .195 + .01

170 to 200 -108.59 + 42.0 6.520 + 2.26

Perpendicular expansion, a

-100 to 200 6.34 + .25 3.200 + .03
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Table 34

HEAT CAPACITY DATA FOR G. E. PHENOLIC FIBERGLAS

(Cp = a + bT)

Temp. Range 0C a cal/g*C b x 103 cal/goC 2  Av Error C x 102

-100 to 125 0.2224 0.67 0.58

150 to 325 0.3058 0.23 1.19

338 to 425 0.5256 -0.49 0.56

425 to 478 1.9380 -3.78 1.43

480 to 505 -3.7618 8.02 1.24

505 to 575 0.2105 0.25 0.44

The expansion plots parallel and perpendicular to the layers are given

in Figures 55 and 56 and discussed with Avco Phenolic Fiberglas. The irregular

weave pattern of the glass fibers accounts for the greatest deviations in the

expansion values.

Over the temperature range where the heat capacity is a function of

temperature, Cp a + bT, the data can be represented by values of the constants

given for a and b in Table 35. Heat capacity values are similar to those for

G.E. Phenolic Fiberglas with a peak maximum at - 230C which drops to a minimum

at ' 320*C. Table 36 lists the coefficient of expansion values for OTWR.

Table 35

HEAT CAPACITY DATA FOR OBLIQUE TAPEWOUND REFRASIL

(Cp = a + bT)

Temp. Range OC a cal/g*C b x 104 cal/goC 2  J Av Error cp x 102

-100 to 0 0.2150 4.18 0.20

20 to 210 0.2178 9.09 0.47

220 to 300 0.7049 -14.46 0.93

325 to 425 -0.1350 13.10 0.92

450 to 625 0.2093 3.28 2.68
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Figure 57. Differential Thermogram of G.E. Phenolic Fiberglas.
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Figure 58. Differential Thermogram of Oblique Tapewound Refrasil.
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Table 36

LINEAR THERMAL EXPANSION DATA FOR OBLIQUE TAPEWOUND REFRASIL

Temp. 0C a, X 106/0C allI x 1Q5/*C Temp. C aj x 106/'C x los/c

-100 6.00 1.14 60 5.01 1.91

-90 6.01 1.07 70 3.68 1.84

-80 6.20 1.21 80 2.67 1.81

-70 6.20 1.14 90 0.67 1.68

-60 6.66 1.21 100 1.34 1.61

-50 6.90 1.31 110 1.34 1.68

-40 7.00 1.27 120 2.34 1.54

-30 7.20 1.24 130 2.67 1.64

-20 7.76 1.64 140 3.01 1.91

-10 8.25 1.54 150 3.34 2.14

0 8.36 1.51 160 3.30 2.14

10 8.69 1.51 170 3.50 2.72

20 8.30 1.47 180 2.56 3.35

30 8.02 1.47 190 3.79 4.37

40 7.35 1.50 200 4.35 5.36

50 5.54 1.50

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range cC IA x 105 oC- B x 106 oC-2

Parallel expansion, a1

-100 to 50 1.51 + .03 0.04

60 to 110 2.24 + .10 -0.06

115 to 145 0.66 + .67 0.19

140 to 200 -7.76 + 1.22 0.66

Perpendicular expansion, ai

-100 to 330 0.802 + .01 0.02

40 to 100 1.129 + .08 -0.11

or 100 to 200 -0.088 + .07 -0.03

-100 to 200 0.595 + .04 -0.02
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(8) Carbon Phenolic (CP)

The General Electric prepregnated carbon phenolic studied, contains

carbon cloth filaments which appear to be uniaxially orientated. Specification

data (Ref. 122) include:

density 1.48 g/cm 3

resin 34 percent by weight

reinforcement 66 percent by weight

elemental analysis C 90.8 percent N 0.6 percent

H 2.1 percent 0 6.5 percent

This phenolic resin is a very highly crosslinked three-dimensional

polymer, since the phenol was able to react with formaldehyde at positions ortho,

meta, and para to the alcohol group. The phenolic resin is the base material with

carbon fibers as the filler.

The DTA thermogram (Fig. 59) shows an exotherm onset at approximately

105*C with an exothermic peak temperature at 225'C. The latter leads into a

decomposition valley with a minimum at approximately 475'C.

Repeated DTA studies of the sample showed that the porosity of the

material permitted excessive absorption of moisture, because water and ice points

were detected oi. the initial thermograms. These were removed by predrying the

sample in an oven at 100*C for two hours. It is known that ionic impurities

coupled with moisture will increase the electrical conductivity of an insulator.

It is also known that the thermal conductivity of materials is directly propor-

tional to electrical conductivity and depends on chemical composition, filler,

temperature, and moisture. The addition of the carbon filler to the phenolic

matrix resulted in a thermal conductivity of 0.002 cal/sec-cm-*C (Ref. 122), as

opposed to the value of 0.0003 cal/sec-cm-*C for the unfilled polymer. Because

of increased heat dissipation resulting from this high thermal conductivity, it

was necessary to perform all thermal studies at a rate of 50 C/min. Tn this way,

temperature equilibration at each point of interest was assured. Reproducible

and comparable results were obtained only after the humidity and rate of heating

were rigorously controlled.

Moisture and heating rate were also seen to have a pronounced effect

on expansion data. In general, the elongation increased as the amount of absorbed

moisture increased, but no uniform trend was noted. Expansion values in the "a"

and "c" directions (Table 37) were obtained from runs on the predried sample.
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Table 37

LINEAR THERMAL EXPANSION DATA FOR CARBON PHENOLIC

Temp. C a X 1O5/C all x 105 /oC Temp. 0C a, X 1O5 /oC a1 l xlo5/°C

-100 1.05 1.17 60 0.62 1.27

-90 1.24 1.30 70 0.53 1.07

-80 1.14 1.30 80 0.56 1.24

-70 1.02 1.37 90 0.74 1.17

-60 0.90 1.37 100 0.81 1.37

-50 0.99 1.46 110 0.68 1.43

-40 0.93 1.50 120 0.74 1.69

-30 0.96 1.56 130 0.96 1.72

-20 0.99 1.72 140 1.33 1.85

-10 1.02 1.69 150 1.42 2.15

0 1.15 1.72 160 1.55 2.28

10 1.08 1.66 170 1.30 2.99

20 0.93 1.63 180 1.42 4.62

30 1.05 1.37 190 2.07 7.61

40 0.62 1.43 200 2.23 19.90

50 0.68 1.37

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range °C J A x 105 C-1 J B x 106 °C-2

Parallel expansion, a1

-100 to 0 1.75 + 0.02 0.06

10 to 70 1.75 + 0.06 -0.09

110 to 190 -6.19 + 2.20 0.61

Perpendicular expansion, i

-100 to -20 0.87 + 0.07 -0.03

-20 to +30 1.04 + 0.03 -0.00

40 to 80 1.12 + 0.17 -0.08

80 to 200 -5.60 + 0.21 0.13
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Figure 59. Differential Thermogram of Carbon Phenolic.
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Figure 60. Linear Coefficient of Expansion Versus Temperature
For Carbon Phenolic (Parallel and Perpendicular to the Axis).
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The plot of a versus T (Fig. 60) shows a slight decrease in the expansion from

approximately 300 to 80*C. This decrease is less prcnounced in the "a" direction

and may be the result of decomposition of the phenol component of the polymer.

The heat capacity equations derived from linear least-square curve

fitting of the original data give the expressions in Table 38. A 58 percent

increase in heat capacity is noted from -100 to 800 C which decreases to "' 12

percent up to 240°C and levels off to nu 9.0 percent from 2400 to 700*C. The data

are consistent with the expectations for the solid-solid, liquid-solid, and solid

residue phases, which are prevalent in the three temperature ranges of the polymer.

Table 38

HEAT CAPACITY DATA FOR CARBON PHENOLIC

Cp = a + bT)

Temp. Range OC a cal/g*C b x 103 cal/g C2  Av Error cp x 102

-100 to 75 0.1881 1.07 0.53

80 to 225 0.2263 0.51 0.59

250 to 700 0.3152 0.12 0.15

(9) Chopped Nylon Phenolic (CNP)

The chopped nylon phenolic studied is a laminated thermosetting

product made of nylon fabric sheet material on which was impregnated a phenolic

thermosetting resin binder, and consolidated under high temperatures and pressure

into a hard solid product. The nylon fibers tend to line up parallel to the

plane of the sheet, but in random direction. The effect of this nonwoven basis

of the reinforcement is to introduce a higher level of variability in the mechani-

cal properties. The material had a calculated density of 1.68 g/cm 3.

As indicated on the DTA thermogram (Fig. 61), no pronounced

transitions occur before 200*C; however, a slight break in the curve at approxi-

mately 40*C suggests the appearance of the nylon glass transition temperature.

At approximately 200C the characteristic phenolic exotherm onset is observed,

which is interrupted by a sharp fusion peak at 257*C. The latter is attributed

to the nylon component of the polymer. Decomposition begins at approximately

380*C with the well-defined decomposition peak occurring at 11 430*C. A charred

residue remained after heating to temperatures beyond 700*C.
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The coefficient of expansion versus temperature curves

(Figures 62 and 63) indicate the presence of the glass transition temperature

at approximately 400C. This temperature was more clearly observed on the original

length versus temperature curves. No further secondary transitions were listed

for the material, because small irregularities in the expansion curves could be

the result of the non-uniformity of the interwoven layers.

Plots of the parallel expansion, all, (Fig. 62) of chopped nylon

phenolic and tapewound nylon phenolic show that both increase rapidly to about

160 0C. Reruns on the materials indicated a softening region from approximately

800 to 350*C, which was more pronounced for chopped nylon phenolic than for the

tapewound polymer. The upper limiting temperature was verified by heat capacity

data. This "soft region" is indicated by the dotted line on the graph of chopped

nylon phenolic (Fig. 62) and suggests that the regular weave pattern of TWNP

increased the strength of the polymer to a greater extent than the irregular weave

made by the chopped strands. Since increase in polymer strength is not directly

related to decreased thermal expansion, results of Table 39 show CNP to be more

effective in lowering the expansion of the polymer. Room temperature data

parallel and perpendicular to the plane (Table 39 and Figures 62 and 63) indicate
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Figure 61. Differential Thermogram of Chopped Nylon Phenolic.
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Table 39

LINEAR THERMAL EXPANSION DATA FOR CHOPPED NYLON PHENOLIC

Temp. 0C a, x 105/C a,, x 105/oC Temp. 0C a,_ x 105 x i05/C

-100 2.40 3.32 60 4.30 7.80

-90 2.44 3.40 70 4.40 8.00

-80 2.43 3.78 80 4.33 8.42

-70 2.56 4.09 90 4.48 8.66

-60 2.46 4.00 100 4.61 8.98

-50 2.88 4.42 110 4.71 9.23

-40 3.22 4.77 120 5.40 9.63

-30 3.33 4.97 130 5.92 10.22

-20 3.50 5.01 140 5.99 10.79

-10 3.43 5.32 150 6.89 11.38

0 3.43 5.41 160 6.82 11.98

10 3.57 5.38 170 7.69 12.56

20 3.40 5.27 180 7.97 13.20

30 3.60 5.80 190 8.63 13.96

40 3.88 6.42 200 9.01 14.40

50 3.98 7.43

Polynomial Fit for Coefficient of Expansion

(a = A + BT)

Temp. Range xC A 105 OC- B x 106 oC-2

Parallel expansion, a 1

-100 to 0 5.56 + 0.07 0.24 + 0.01

20 to 60 3.77 + 0.13 0.70 + 0.00

70 to 200 3.90 + 0.26 0.51 + 0.02

Perpendicular expansion, ai

-100 to -55 3.42 + 0.40 0.11 + 0.05

-60 to -20 4.09 + 0.14 0.25 + 0.03

-40 to 110 3.51 + 0.06 0.11 + 0.01

100 to 200 -0.08 + 0.26 0.45 + 0.02

130



AFWL-TR-67-91

chopped nylon phenolic is 40 to 60 percent more efficient in lowering the

expansion than tapewound nylon phenolic. The addition of nylon fibers to the

phenolic matrix improved the dimensional stability of the molded nylon by

reducing the thermal expansion.

The mean observed heat capacity values were smoothed by fitting

to them empirical functions of temperature whose coefficients were determined

by the method of least squares. The resulting equation, Cp = a + bT, gives

expressions as indicated in Table 40.

The corresponding enthalpy, H, for the low temperature ranges may

be expressed as

H_50oC - H_100o C  = 0.1794 T + 7.15 x 10-4 T2

H2050 C - Ho C = 0.1964 T + 1.04 x 10-
3T2

The enthalpy of fusion, AHf, (at 257*C) associated with the nylon

component present in the polymer was found to be 8.36 cal/g. Since the exact

concentration of the nylon component is unknown, no comparison can be made with

known literature values.

Table 40

HEAT CAPACITY DATA FOR CHOPPED NYLON PHENOLIC
C M a + bT)

Temp. Range *C I a cal/g*C I b x 103 cal/goC 2  Av ErrorC x 102

-100 to -5 0.1784 1.43 1.25

0 to 205 0.1764 2.07 0.22

235 to 260 -4.3005 19.31 3.20

260 to 280 6.5367 -20.88 4.81

285 to 335 0.3364 0.71 0.44

(10) Tapewound Nylon Phenolic (TWNP)

Tapewound nylon phenolic consists of a nylon cloth base with a

phenolic resin binder. The nylon fibers are oriented through the matrix to give

the effect of a closely woven fabric. The mechanical and thermal properties

are highly influenced by the presence of the thermoplastic polyamide threads.

The density of the material is 1.21 g/cm 3.
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The DTA thermogram (Fig. 64) is very similar to that of chopped

nylon phenolic (Fig. 59); however, the glass transition temperature of nylon was

not observed for TWNP. The exothermic onset at approximately 148C leads to

the decomposition peak at 433C. Preliminary pyrolysis studies show the material

to be approximately 11 percent volatilized at 370C. The typical nylon fusion

endotherm was evident at 255C.

As previously discussed under chopped nylon phenolic, the finely

woven structure is less efficient in lowering the thermal expansion of the

material than is the nonwoven chopped nylon phenolic. As observed from the

expansion data (Table 41 and Figures 62 and 63), the parallel alignment of the

woven filaments in the TWNP resin matrix permit the material to withstand greater

stresses than the chopped nylon polymer. (For the former, no softening region

was evident.)

The perpendicular expansion curve (Fig. 63) shows a slight

irregularity at \, 40C, which is probably because of the glass transition tempera-

ture of the nylon component. No such irregularity was noted on the parallel

expansion curve (Fig. 62).
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Figure 64. Differential thermogram of Tapewound Nylon Phenolic.
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Table 41

LINEAR THERMAL EXPANSION DATA FOR TAPEWOUND NYLON PHENOLIC

Temp. OC Il X 105/OC O, x 105/0C Temp. 0C a, x 10 5 /*C a1, x i05/*C

-100 3.90 4.54 60 10.82 12.04

-90 3.90 4.54 70 11.19 12.80

-80 3.92 4.54 80 11.69 13.65

-70 3.95 4.54 90 11.96 14.07

-60 4.20 4.54 100 12.63 14.74

-50 4.42 5.21 110 13.00 14.89

-40 4.62 5.21 120 13.30 15.55

-30 5.57 5.84 130 13.80 15.92

-20 5.51 6.84 140 14.34 16.92

-10 6.58 6.88 150 15.59 18.12

0 6.68 7.99 160 18.27 19.01

10 6.68 8.67 170 23.18 23.97

20 7.19 8.81 180 26.54 34.01

30 8.26 10.21 190 26.84 63.35

40 9.67 10.95 200 27.54 67.42

50 10.21 11.82

Polynomial Fit for Coefficient of Expansion
(a = A + BT)

Temp. Range OC IA ×105 oC-1 B × 10'6 oc-2

Parallel expansion, a

-100 to -10 5.93 + 0.36 0.26 + 0.00

0 to 100 7.29 + 0.30 0.54 + 0.07

110 to 160 1.44 + 2.77 0.98 + 0.20

160 to 200 15.50 + 9.07 2.22 + 0.50

Perpendicular expansion, a1

-30 to 160 7.95 + 0.20 0.68 + 0.02

0 to 160 7.99 + 0.30 0.68 + 0.03
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Heat capacity data for the polymer are represented by Cp = a + bT,

where the constants are shown in Table 42.

The heat capacities in Table 42 follow the same trends as observed

for chopped nylon phenolic (Table 40). At low temperatures, -100*C to 200*C,

heat capacities differ by approximately 7 percent; beyond 200C cp curves are

similar, but chopped nylon phenolic has lower Cp values. As noted for chopped

nylon phenolic and several other polymers, previous heat treatments gave varied

values for the heat capacities.

The amount of heat absorbed at the 255*C fusion peak was AH = 3.8

cal/g. This value deperis upon the concentration of the nylon component in the

polymer.

(11) Rad 60

This polymer is a black carbonaceous rigid material which has a

density of 1.41 g/cm3. The DTA thermogram (Fig. 65) shows no significant transi-

tions, except a slight rise in the baseline is noted at approximately 140C with

a more rapid increase at approximately 475*C.

Expansivity data in the "c" -4 -r'ion, parallel to the axis

(Table 43 and Fig. 66), shows a rapid decrea3e in a at temperatures below

150*C. Parallel expansion data for graphite reported by Riley (Ref. 123) show

a similar decrease, however, the overall expansion values for pure graphite are

;omewhat higher than those observed in this study.

The higher expansion in the parallel plane over that in the

perpendicular direction may be attributed to the layereo structure of the polymer.

The covalent linking within a layer is so strong that thermal vibrations perpen-

dicular to the layers will be decreased; the larger Mass of each layer is also

significant in lowering the expansion of a P

Heat capacity data from -100' to 600*C were fitted to polynomial

equations of the form C = a + bT. Values of the constants are shown in Table 44.
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Table 42

HEAT CAPACITY DATA FOR TAPEWOUND NYLON PHENOLIC

(c = a + bT)

Temp. Range *C a cal/g 0C b x 103 cal/goC 2  Av Error C p x 102

-100 to 0 0.2956 1.21 0.13

25 to 200 0.2810 2.19 0.32

205 to 230 1.0212 -1.45 0.38

235 to 255 -1.2359 8.27 2.25

260 to 275 -8.6015 36.48 2.22

275 to 295 10.0638 -31.30 2.88

300 to 380 0.9403 -0.41 0.32

390 to 415 -5.5041 16.46 0.63

420 to 435 -0.4837 4.41 0.63

435 to 444 2.3029 -2.01 0.12

445 to 452 6.7370 -12.03 0.13

Thermal expansion data (Table 43 and Figure 66) obtained parallel

and perpendicular to the plane are unusual in that expansivities in the perpen-

dicular direction, al, are negative to 190 0C. This negative expansion may be

because of the graphitic component [a, (Graphite - 0 - 4000C) - 1.58 x 10-61

present in the polymer; however, the data are subject to error for the limitations

of the instrument may have been exceeded. Attempts were made to obtain expansi-

tivity data below 0°C, but values were not reproducible so they are not reported

h.:e. The values for the perpendicular expansion (Table 43) were obtained by

averaging the results from five individual measurements, which agreed to

within + 10 percent.

136



AFWL-TR-67-91

Table 43

LINEAR THERMAL EXPANSION DATA FOR RAD 60

Temp. 00 , 106/oC al X 106/00 Temp. 'C aix 106/aC al x 106/00

0 -3.83 2.02 110 -3.06 6.08

10 -3.95 1.79 120 -2.85 8.08

20 -4.00 1.52 130 -2.58 10.43

30 -4.01 1.25 140 -2.20 12.45

40 -4.10 1.02 150 -1.90 16.16

50 -4.05 0.91 160 -1.53 17.50

60 -4.00 1.02 170 -1.58 18.89

70 -3.90 1.43 180 -0.65 20.20

80 -3.76 1.99 190 -0.25 24.21

90 -3.56 3.03 200 +0.05 25.40

100 -3.36 4.39

Polynomial Fit for the Coefficient of Expansion

(ar - A + BT)

Temp. Range *C I A x 106 *C-1 I B x i0 7 oC-2

Parallel expansion, aI

0 to 50 2.00 + 0.04 -0.23 + 0.01

60 to 100 --4.30 + 0.82 0.83 + 0.10

110 to 150 -21.25 + 2.03 2.45 + 0.16

150 to 200 -16.78 + 4.15 2.11 + 0.23

Perpendicular expansion, a

0 to 60 -3.90 + 0.04 -0.03

75 to 125 -5.68 + 0.10 0.24

140 to 200 -7.79 + 0.63 0.39
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Table 44

HEAT CAPACITY DATA FOR RAD 60

(cp = a + bT)-

Temp. Range 0C a cal/g0 C I b x 103 cal/g*C2  Av Error Cp x 102

-100 to +20 0.2380 0.67 0.26

25 to 200 0.2346 0.92 0.32

225 to 350 0.3219 0.43 0.24

360 to 450 0.4034 0.19 0.12

460 to 600 0.5146 -0.06 0.07

c. Thermal Properties of Refractories, Metals, and Alloys

(1) Pyrolytic Graphite

This material is a polycrystalline vapor-deposited form of

graphite (density 2.19 g/cm 3). It differs from normal graphite in atomic struc-

ture primarily in the mode of stacking in the basal planes, where the crystallites

are stretched in a random fashion in the plane. This randomness in layer

stacking destroys periodic repetition of the atoms in the direction perpendicular

to the layers and appreciably alters those properties which depend on regularity

of atomic arrangement, i.e., thermal expansion values.

The DTA thermogram (Fig. 67) shows no significant transitions except

for slight changes in heat capacity, which cause the baseline to shift slightly.

Heat capacity studies showed three distinct changes in the slope. These are

illustrated by the linear least-squares data in Table 45. Results agree well

with heat capacity data presented by Dugdale (Ref. 124).

The mean thermal expansion coefficients in the "c" direction, a

are given in Table 46 and illustrated in Figure 68. The variation of the linear

expansion with temperature agrees well with experimental and theoretical values

obtained by Nelson and Riley (Ref. 125) and Entwisle (Ref. 126). The maximum

expansion at 100*C in the "c" direction given in Reference 126 was 2.50 x 10- 5

in/in*C; whereas, the value obtained in this study was 2.52 x 10- 5 in/in0 C.

138



AiT 0.2 OC/inch

-100 -80 -60 -40 -20 0 *20 .40 +60

50 100 150 200 250 300 350 400 450 500 550
TEMPERATURE, 'C

Figure 67. Differential Thermogram of Pyrolytic Graphite.
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Table 45

HEAT CAPACITY DATA FOR PYROLYTIC GRAPHITE

Cp = a + bT)

Temp. Range OC a cal/g 0C b x 103 cal/goC 2  Av Error cp × 102

-100 to 75 0.0318 1.27 0.64

75 to 225 0.0911 0.71 0.31

225 to 250 0.1910 0.26 0.47

Because of the limitations of the instrument, the expansion values

in the "a" direction, a were impossible to obtain. Entwisle (Ref. 126) gives

a I = - 0.8 x 10-6 in/in°C. Kingery (Ref. 127) has suggested that the low thermal

expansivity of graphite is because of the high porosity. As the temperature is

raised, the expansion is absorbed by the closing of the microfissures, rather

than by gross cbanges in volume.

The explanation of the expansivity results given by Nelson and Riley

(Ref. 125) emphasizes the importance of the layered structure. Elastic deforma-

bility parallel to the principal "c" axis will be much larger than that perpen-

dicular to it, owing to the tighter interatomic bonding within the layers. In

terms of the elastic moduli, this may be written as S3 3 >> S1. Under the

influence of temperature and of zero-point energy the atoms will vibrate, and

the limiting frequency in the parallel direction, w c will be greater than that

perpendicular to it, w . Magnus (Ref. 128) has presented values for the twoa

characteristic temperatures which are eL - 2007 0C and 611 = 487C and are defined

by the two limiting frequencies as

S(c); 0a =(a) (25)

where h and k refer to the Plank and Boltzmann constants, respectively. At low

temperatures, theory requires all the thermal enci.-l to be absorbed in oscil-

lations in the "c" direction because of the low value of 0 as compared with O|.

These parallel oscillations will therefore have the greater amplitude and a 1

will be greater than a,. The stretching of the lattice in one direction causes

a lateral contraction in the other. At low temperatures, the small expansion

within the layers will be lower than the lateral contraction and ai will be

negative. At a higher temperature the lateral contraction and thermal expansion
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Table 46

LINEAR THERMAL EXPANSION DATA FOR PYROLYTIC GRAPHITE
(PARALLEL TO THE AXIS)

Temp. *C etl x lO5/,C Temp. 0C all x 105/*C

-100 1.30 60 2.49

-90 1.38 70 2.50

-80 1.55 80 2.51

-70 1.72 90 2.52

-60 1.82 100 2.52

-50 1.90 110 2.56

-40 1.90 120 2.56

-30 1.89 130 2.59

-20 2.05 140 2.59

-10 2.16 150 2.66

0 2.16 160 2.69

10 2.22 170 2.73

20 2.23 180 2.90

30 2.26 190 2.94

40 2.43 200 2.96

50 2.44

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range 0C A x 105 OC- 1 B X 106 oC- 2

Parallel expansion, atl

-100 to 70 2.123 + 0.02 0.07

80 to 200 2.122 + 0.06 0.04
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are balanced and = 0. A further increase in temperature causes the expansion

to become greater than the lateral contraction, and ai will become positive and

increase with temperature. Further relationships between the Debye temperature

and the coefficient of expansion will be discussed in Section IV.

(2) Quartz

A sample of X-cut quartz crystal, density 2.65 g/cm 3, was used to

measure the linear thermal expansion parallel to the axis. Attempts to obtain

expansivity measurements in the "a" direction, a , were unsuccessful. Data for

the expansion parallel to the axis are given in Table 47 and graphed as a function

of temperature in Figure 69. Expansivity values increase linearly from a value

of 8.0 x 10-6 in/inOC at -100 0C to 15.0 x 10- 6 in/in°C at 200'C.

Heat capacity measurements were made on the sample from -100 to

300°C. The best linear least-squares polynomial fit of the data may be repre-

sented by the constants in Table 48.

(3) Fused Silica

The sample used here consisted of blocks of silicon dioxide formed

by fusing quartz (rock crystal) in an electrically heated furnace above 1710°C.

The material is easily supercooled to ordinary temperatures without crystallizing

and exhibits very little change in volume with change in temperature. The

calculated density was 1.93 g/cm 3.

The representative thermogram (Fig. 70) illustrates no significant

transitions from -i00 ° to 700*C. However, a pronounced increase in heat capacity

is evident at 275 0C.

Thermomechanical measurements were made on the sample and

experimental results indicate that fused silica has an average coefficient of

expansion parallel to the plane of % 0.42 x 10-6 in/in0 C from -i00* to 140C and

% 0.62 x 10- 6 in/in*C from 140' to 2000 C. (Values are subject to error due to

the limitations of the instrument.) Values below O°C were extrapolated, Data

are listed in Table 49 and Figure 68.
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Table 47

LINEAR THERMAL EXPANSION DATA FOR QUARTZ
(PARALLEL TO THE AXIS)

Temp. *C all x 106 in/in*C Temp. *C ol, x 106 in/in°C

-100 8.00 60 13.00

-90 8.07 70 13.01

-80 8.50 80 13.23

-70 9.01 90 13.44

-60 9.25 100 13.50

-50 9.55 110 14.04

-40 9.99 120 14.24

-30 10.05 130 14.26

-20 11.02 140 14.30

-10 11.43 150 14.36

0 11.53 160 14.66

10 11.66 170 14.75

20 12.01 180 14.89

30 12.11 190 14.99

40 12.45 200 15.01

50 12.75

Polynomial Fit for Coefficient of Expansion

(a - A + BT)

Temp. Range OC IA x 106 oC- 1  B x I07 *C-2

-100 to 60 11.21 + 0.06 0.33

70 to 200 12.07 + 0.15 0.16
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Figure 69. Heat Capacity Versus Temperature for Pyrolytic Graphite and Quartz.
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Figure 70. Differential Thermogram of Fused Silica.
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Table 48

HEAT CAPACITY DATA FOR QUARTZ

(c. = a + bT)

Temp. Range *C a cal/g*C b x 103 cal/g0C2 Av Error xp 102

-100 to -50 0.1100 0.10 0.08

-40 to -10 0.1405 0.59 0.24

0 to 40 0.1265 1.87 1.27

50 to 80 0.0530 4.05 0.38

80 to 100 -0.0006 4.79 0.00

100 to 225 0.3073 1.64 1.62

225 to 300 0.3328 1.62 0.55

Table 49

LINEAR THERMAL EXPANSION DATA FOR FUSED SILICA

Temp. *C F x 106 in/in*C Temp. C a × 106 ninnC

-100 0.19 60 0.49

-90 0.21 70 0.49

-80 0.23 80 0.54

-70 0.25 90 0.56

-60 0.27 100 0.57

-50 0.28 110 0.59

-40 0.30 120 0.62

-30 0.33 130 0.68

-20 0.34 140 0.74

-10 0.36 150 0.75

0 0.38 160 0.78

10 0.40 170 0.82

20 0.42 180 0.86

30 0.44 190 0.92

40 0.46 200 0.99

50 0.48
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(4) 1060 Aluminum, 6061-T6-Aluminum, HM-21A-Magnesium Thorium,
Lead, and Gold

The chemical composition of the materials studied are given in

Table 50. The complete thermal behavior of the metals and alloys in Table 50

was traced by applying thermodynamic relationships to basic data obtained by

macroscopic measurements on the substances in question.

Anisotropy is generally expected for alloys; hence, coeffizient of

expansion values were measured for various specimen orientations. Since direc-

tional variations proved to be negligible, isotropy was assumed and Equation (36)

was applicable. Ultrasonic studies for 6061-T6 aluminum (Table 5) show a

longitudinal velocity parallel to the apparent stratification layer, which is

approximately 0.4 percent higher than that across the layers. Since the thermo-

mechanical analyzer gave dimensional accuracies of approximately ± 3.0 percent,

this would account for the constant value of the expansion coefficient obtained

parallel and perpendicular to the apparent stratification layers for this material.

Table 50

CHEMICAL COMPOSITION OF METALS AND ALLOYS STUDIED

(Density at 20°C)

Alloy Pg/cm3  Percent Composition

1060 Al 2.697 99.6% Aluminum

6061-T6-Al 2.700 98% Al with principal impurities Mg, Cr, Si, Cu

HM-21A-Mg-Th 1.782 Th 1.5% to 2.5%, Mn 0.45% to 1.1%, other
impurities 0.30%, balance Mg

Block Lead 11.171 99.0%

Block Gold 18.959 99.0%

The ultrasonic data for 1060-aluminum and HM-21A magnesium-thorium

alloy (Section II, paragraph (2) and Table 6) did not indicate a marked dependence

of the velocities with direction of propagation along the axes of the cube.

Since variations in the expansivity measurements in the "a" and "c" directions

were also negligible, the condition of isotropy was more fully realized in these

materials.
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Heat capacity values determined from 0 to 400*C are tabulated in

Table 51. Since the GrUneisen relation (Equation (36)) makes use of the iso-

thermal bulk modulus, BT, and since acoustical velocities were obtained under

adiabatic conditions, the following relationship was substituted in Equation (36)

B - 'P (26)

BT cV

where BS and BT refer to the adiabatic and isothermal bulk moduli.

GrUneisen (Ref. 129) has shown experimentally that at temperatures

below room temperature the coefficient of thermal expansion is approximately

proportional to the specific heat such that

a/cv W k (27)

if it is assumed that the GrUneisen ratio, y, is constant. Introducing the

expression for cv from equation (36) with the assumption that cp = Cv)

equation (27) becomes

k O (28)
BS

As the bulk modulus does not vary much with temperature, the assumption of a

constant y leads to the approximate constancy of k. Tables 52, 53, and 54 sum-

marize the properties used to calculate the GrUneisen ratio.

The ultrasonic data were fitted to an appropriate polynomial by

the method of least squares and are represented in equation form in Section II,

paragraph 2. The polynomial expansion for the shear velocity in lead is omitted

because of the unreliability of the shear measurements due to the porosity of

the sample (percent porosity = 21.2). The shear velocity value used in this

study was given by Mason (Ref. 130) and limits the accuracy of aBS) (Table 52).

Linear thermal expansion data (Table 53), and elongation data

-o , Table 54, agree well with reported values for similar materials. The

elongation values for lead were compared to values presented by Nix and MacNair

(Ref. 131) and Rubin, et al. (Ref. 132), in order to further define the accuracy

of the method. A deviation of approximately 2.0 percent in ( - ) at -100 0C

decreased steadily to 1.6 percent at -20*C and an approximate overall deviation

of 2.0 percent was retained to 200*C. The larger error below -20*C is the result
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of using a sensitivity calibration obtained at room temperature; whereas, the

very slight increase in error above 1900 is probably due to the slight pressure

exerted on the sample by the probe. Anomalies in lead are also associated with

the high conductance of the material wherein the increased dissipation of heat

is highly affected by the rate of sample heating.

The experimentally determined average expansions of 3.1 x 10-5 for

lead and 1.3 x 10-5 for gold agree well with Hidnert and Krider's values (Ref. 133)

of 3.0 x 10- 5 and 1.4 x 10- 5 , respectively.

Table 51

HEAT CAPACITY DATA FOR 1060 ALUMINUM, 6061-T6
ALUMINUM, HM-21-A MAGNESIUM-THORIUM, LEAD, AND GOLD

(Units of c p are cal/g°C)

Temp. *C Mg-Th Al 6061-T6 Al-1060 Pb Au

0 0.248 0.210 0.200 0.030 0.030
25 0.252 0.211 0.202 0.031 0.031
50 0.259 0.216 0.204 0.032 0.031
75 0.267 0.219 0.206 0.301 0.031

100 0.268 0.224 0.207 0.032 0.031

125 0.269 0.228 0.209 0.032 0.032
150 0.275 0.233 0.210 0.032 0.032
175 0.276 0.236 0.220 0.032 0.032
200 0.279 0.241 0.226 0.032 0.032

225 0.285 0.248 0.234 0.033 0.032
250 0.288 0.253 0.236 0.034 0.032
275 0.288 0.256 0.240 0.034 0.032
300 0.289 0.260 0.247 0.034 0.032

325 0.294 0.268 0.249 MELT 0.033
350 0.296 0.274 0.254 TRAN 0.033
375 0.302 0.279 0.258 0.0400 0.034

400 0.302 0.281 0.263 0.0402 0.034
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Table 52

LINEAR POLYNOMIAL EQUATIONS DESCRIBING THE EXPANSIVITY
DATA OF VARIOUS METALS AND ALLOYS

(Temperature Range 0* to 200 0C)

Metal Equation

1060 Al a = 2.09 x 10 - 5 + 1.9 x 10- 7 + (3.00 x 10-8 + 1.6 x 10-9) TOC

6061-T6 Al a = 2.10 x 10-5 + 2.2 x 10 - 7 + (3.06 x 10-8 + 1.8 x 10-9) T0 C

Au a - 1.35 x i0-5 + 2.1 x 0- + (0.56 x 10-9 + 1.8 x 10-10) TOC

Pb a = 2.87 x 10 - 5 + 8.6 x 10-8 + (2.40 x 10-8 + 7.3 x 10 - 10) T0C

HM-21A Mg-Th a = 2.50 x 10 - 5 + 1.7 x 10 - 7 + (3.48 x 10-8 + 1.5 x 10-9) TOC

Table 53

ELONGATION VERSUS TEMPERATURE FOR SEVERAL METALS AND ALLOYS

Elongation 0 x 10

Temp. °C Mg-Th Al 6061-T6 Al-1060 Pb Au

-100 -2.35 -2.01 -2.12 -2.88 -1.30

-75 -1.95 -1.70 -1.79 -2.36 -1.07

-50 -1.51 -1.36 -1.44 -1.81 -0.82

-25 -1.04 -1.00 -0.98 -1.23 -0.55

0 -0.55 -0.51 -0.53 -0.62 -0.27

25 0.00 0.00 0.00 0.00 0.00

50 0.63 0.56 0.52 0.67 0.32

75 1.22 1.19 1.07 1.37 0.65

100 1.88 1.93 1.65 2.09 1.04

125 2.60 2.59 2.27 2.62 1.52

150 3.35 3.41 2.90 2.83 2.03

175 4.11 4.28 3.56 3.59 2.58

200 4.42 4.52 4.21 3.74 3.12
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The expansion plots of the two aluminum alloys (Fig. 71) show a

rapid decrease in expansion, whereas the magnesium-thorium expansion is much less.

These results agree well with data for pure metals obtained by Borelius (Ref. 134)

and are considered to be associated with low temperature phenomena; wherein, cV

and a approach zero as T - OK. The differences between the magnesium-thorium

and aluminum alloys are probably associated with differences associated with

cubical and hexagonal systems.

The measured values of thermal expansion (Table 52) and the specific

heat data (Table 51), combined with ultrasonic measurements (Section II, para-

graph 2) were then used to calculate the GrUneisen ratio, y, (Table 54). Plots

of y versus T (Fig. 72) indicate slight variations in the Grineisen ratio over

the temperature range studied. These slight variations define the temperature

dependency, or the anharmonicity of the crystal in much the same way as the Debye

temperature, e, is taken to be a characteristic temperature.

According to the Debye Model, y and 0 are related by

d ln V (29)

Barron (Ref. 135) has shown that Grineisen's rule is obeyed at low

temperatures when T - O*K and at high temperatures when T 0 6, and hence,

according to Equation (29), 6 is the limiting temperature. He has also proposed

a model which suggests that the main variations of y should occur for temperatures

below 0.30.

No attempt has been made to calculate the Debye temperature because

of insufficient data at low temperatures. The characteristic Debye temperatures

for the pure metals given by Crawford (Ref. 136) for magnesium, aluminum, lead,

and gold are, respectively 87*C, 117*C, -184*C, and -84*C,

The actual significance of the Grineisen ratio on the equations of

state of these solids, as opposed to previously estimated ratios, has not been

studied. Rice, et al. (Ref. 137) report a Graneisen ratio of 1.32 for pure mag-

nesium metal obtained from dynamic measurements. The average value obtained in

this study for the magnesium-thorium alloy was 1.45. If the value for the pure

metal is used instead of the alloy, this would constitute an error of approxi-

mately 10 percent in this ratio.

150



IL

3

So is.0o

0.

3.0

z

w

I )

0 to so 75 100 Its 150 179 900

TEMPERATURE, OC

Figure 72. Grilneisen Ratio, y, as a Function of Temperature

For 1060 Aluminum, 6061-T6 Aluminum, HM-21A Magnesium Thorium, and Gold.

151



040

00 0

~~~~~- 0 00 HHH ~
0 4 0 C N N C r

H 0 00 %0 en 0 0N

H r- CN 0 0 -It N1 0 C0 -11

N I 0 0 -

0-

000 ~ H 0HH

N: gC N 0. Lr 0 01 Hlf H lf 0

4 4 N4 'C CO
'. H P, z ~ HL$ 0N'

0 4 I S* .

0 H u - H ' ~ 00 H0'
H0 E-4~

OH -A

4-4 1-4x 44

-v U) .144

w 04x 0

N 0 ,

0 H

0-- 0 0a -
co m -o

r- H *r4 -44 .) -

u 4. w z 0 u

to C: 0 > 0 .41 C V

0. H u) 0 0 pq 0 ) Q 0) U 0U

~ .*. 4-1 0

0$-4 r= 0) Q 0 ) 0 -H 0 0 1 0 0
z . - 0 <1

-~~r E-s 00 4. 4 . .1 4 >
a) 0 ~ w 4.4 (1 ( 3) ) <

p > E- C- E-44*- E ~ E4 0 ~ o E 4 : '-E' 4 .

152



Values for cV (Table 55) were determined from the equation

i- = V -N/ p (30)

which, upon proper substitution and rearrangement, becomes

VT 2 = a2TBs  (31)cV  Cp s P P

where Xs refers to the adiabatic compressibility.

Thermodynamic properties such as enthalpy, AH, and entropy, AS,

(Table 54) were determined at 25C by the application of suitable thermodynamic

relations to the c data. (See Appendix VII.)

The adiabatic bulk modulus, Bs  (Table 54) was calculated from the

ultrasonic longitudinal and shear velocities, Vk and Vt, according to Equation (4)

and the density was obtained from a Maclaurin expansion retaining only the linear

term in temperature. Zero subscripts refer to values obtained at OC.

The relative change in the bulk modulus with temperature, 
/3B'

(Table 54) was obtained from the differentiation 
of Equation (4).

The value o' was obtained by fitting linear least-square

polynomial equations to the expansion data of Table 52.

The temperature derivative of the GrUneisen ratio (L) O, (Table 54)

was obtained by differentiating each term of Equation (139) (Appendix III) which

gave Equation (147) (Appendix III).
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Table 55

HEAT CAPACITY AT CONSTANT VOLUME

(CV) FOR THE METALS STUDIED

cal)
Temp. *C Mg-hIn Al 6061-T6 Al-1060 Pb Au

0 0.248 0.210 0.200 0.030 0.030

25 0.252 0.211 0.202 0.031 0.031

50 0.259 0.216 0.204 0.032 0.031

75 0.267 0.220 0.205 0.032 0.031

100 0.268 0.224 0.207 0.032 0.031

125 0.268 0.228 0.209 0.032 0.032

150 0.275 0.233 0.210 0.032 0.032

175 0.276 0.236 0.220 0.032 0.032

200 0.279 0.240 0.226 0.032 0.032
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SECTION IV

APPLICATIONS

Many of the uses of ultrasonic and thermal data regarding application to

equation of state parameters have been discussed in Reference 4. Basically these

applications include estimations of shock impedances, bulk velocities, shock

velocity-particle velocity slopes, and precise calculations of GrUneisen ratios

in isotropic, elastic materials. This section will expand on existing applica-

tions and indicate further uses of ultrasonic and thermal data.

1. The Theoretical and Experimental Determination of
Grneisen Ratios from Ultrasonic and Thermal Data

According to the GrUneisen theory (Ref. 129) the equation of state for solids

is given by

dU EVIB (32)
PU"dV+Y v

where P and V refer to the pressure and volume, EVIB is the vibrational energy,

U is the static lattice energy, And y is the GrUneisen ratio, which in general

is a slowly varying function of the volume.

Schuele and Smith (Ref. 138) rigorously define the GrUneisen ratio of

Equation (32) as a weighed mean of individual gammas by

EYi Ei(VIB)  ci c(i

E = (VIB) Ec i  
(33)

where Ei(VIB), c , and y,, are respectively the ith normal mode of the vibra-

tional energy, the classical Einstein heat capacity, and the individual

GrUneisen ratio. The letter are defined by the equation

d in w(

i d In V (34)

which expresses the volume dependence (V) of the frequencies (Wi) of the lattice

modes.
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For an ideal Debye solid, the atoms have a range of frequencies up to a

maximum frequency, wmax = k 0/h, where 0 is a characteristic temperature, and

h and k are the Planck and Boltzmann constants, respectively. For this type of

solid, the specific heat at very low temperatures is proportional to the cube of

the absolute temperature

c 11Nk (35)
-V =#l4N5~

which becomes

C= 464.4 ()

expressed in cal/mole-degree. Equation (35) is valid for 0 < T .

Since the Einstein frequency, WE' is approximately related to the Debye

temperature, 0, by

3k 3
WE 4 h 4 max

then, yi = y - d in wmax/d ln V For a real solid y is approximately constant

at high temperatures (T > 0 and y = y ) as the Dulong and Petit value (cV = 3R)

is constant in this temperature range. Constancy is also expected at low tempera-

tures (T << where y = yo = - d ln e/d ln V) (see Ref. 135). The main deviations

in the GrUneisen constant are expected to occur below 0.3 0.

As indicated in Reference (4), the thermodynamic relationship for the

Grneisen ratio, y, can be expressed as

y- .or - (36)

where 0 is the volume coefficient of expansion, Bs and BT are the adiabatic and

isothermal bulk moduli, p is the density, and cp and cV are the specific heats

at constant pressure and constant volume, respectively. If accurate experimental

thermal and ultrasonic data as a function of temperature are employed to calculate

y by means of Equation (36), the resulting values will accurately represent the

GrUneisen ratio in accordance with Equatior (34).
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For isotropic, elastic materials Equation (36) reduces to

3a 42 A 2 (37)

where a is the linear coefficient of expansion. However, many of the materials

of current engineering interest are laminated structures, such as carbon phenolic

or Fiberglas. In these cases, Equation (37) must be modified to correspond to

the symmetry of the material. For most layered materials the model of transverse

isotropy (which is similar to hexagonal symmetry) is a fair approximation to the

actual symmetry of the specimen. As indicated in Section II, this model is easily

checked through ultrasonic velocity measurements.

For a transversely isotropic medium, the adiabatic bulk modulus and its

reciprocal, the compressibility X s, are given in terms of the elastic stiffness

coefficients as (See Appendix I)

s c11 + c12 + 2c33 - 4c1 3
(Cii + c1 2)c33 - 2c 3  (39)

c11 + c12 + 2c33 - 4c (3313

A method for determining the elastic stiffness coefficients, cij, is also indi-

cated in Section II. For transverse isotropy, the volume coefficient of expansion

must likewise be modified. It is shown in Appendix VIII that this quantity can

be estimated as

-ai + 2ai  (40)

where ai1 is the linear coefficient of expansion in the z-direction (perpendicular

to the layers), and ai is the expansion in either of the two other orthogonal

directions.

If the GrUneisen ratio were a complete scalar function, the volume coefficient

of expansion and the bulk modulus corresponding to the appropriate symmetry could

be inserted into Equation (36) to yield a scalar result for this ratio. However,

as recently pointed out by Key (Ref. 150) the GrUneisen ratio for anisotropic
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materials must be considered as a tensor. Key shows that for transversely

isotropic materials the Grineisen tensor reduces to (see Appendix I)

Yxx Y Yzz a o o

Yyy ] P o a o (41)

xz y yz PC VYxz Yyz YzzJ o o b

where

a cll all + c12 all + c1 3 a3 3

b c13  11 + c13  a11 
+  c33 33

In this notation al is the linear coefficient of expansion along the layers

(corresponding to a, in the earlier notation) and a3 3 is the expansion coefficient

perpendicular to the layers (corresponding to aei). The elastic stiffness coef-

ficients in Equation (41) are the isothermal coefficients. The equations for the

conversion from the adiabatic to the isothermal coefficients and from the specific

heat at constant pressure to that at constant volume are given in Appendix I.

Equation (41) allows the calculation of the GrUneisen ratio for various direc-

tions in an anisotropic material. The scalar function of the spherical component

of the Gr~neisen ratio for transverse isotropy is given as

a M 1 (2a + b) (41a)
3pV 

v

These equations are consistent with those given by GrUneisen and Goens in 1924

(Ref. 139).

Hydrostatic pressure measurements on the acoustic velocities yield another

way of determining the GrUneisen ratio. Schreiber and Anderson (Ref. 24) give

the Grineisen ratio in terms of the hydrostatic pressure dependence of the

longitudinal and shear modes in an isotropic medium as

1 B /dV
Y +  d/ (42)

BT (dVs
1 = +  - s) (43)

'~s3 V dP
S
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and show that the GrUneisen ratios at low temperature, yL.T.' and at high

temperature, yH.T.' are in this limit

YL.T. S\ 2 (i L + 2y]s (44)

YH.T. = (YL + 2ys) (45)

They show that the use of Equations (44) and (45) compares well with the ratio

calculated through the thermal relation (Equation (36)) for several of the

ceramics and metals. There is not yet sufficient pressure data available on

plastics to perform a similar comparison between the two approaches for these

materials. However, the method possesses potential applications in equation

of state investigations, because it permits another method of determining the

Gr~neisen ratio, and thus, serves as a check of the basic postulate of Gruneisen.

In the present study the Grineisen ratio was determined for several metals,

alloys and polymeric materials from 00 to 200C by means of Equation (36). The

temperature derivative of the GrUneisen ratio at 00C, o , was obtained by

differentiating each term of Equation (36) which gives

/ay) M + 12~ ( 5BN -~ 1(C (46)
r5)0 B a B8 \3 / c~ 3

where the zero subscripts represent 0°C. The relative change in the bulk modulus

was obtained by differentiating Equation (4) for which the density was obtained

assuming a linear expansion with temperature. The temperature variation of the

specific heat and the thermal expansion was obtained from linear least-squares

curves of the respective data.

The experimentally determined GrUneisen ratios are given in Table 56, and

plotted as a function of temperature in Figure 73. The values obtained at 00C

for metals and alloys were taken from Table 54.

For the plastics the GrUneisen ratio was determined directly at each

temperature through the defining Equation (36). This was necessary since many

of the plastics undergo phase transitions throughout the region of interest.

This is particularly true of Delrin Acetal in which a rotational transformation
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Figure 73. GrUneisen Ratios Versus Temperature for Various Materials.
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begins at approximately 700C. As shown in Figure 46 the linear expansion, and

to a certain extent the specific heat, shows a marked increase at 70*C. Since

the Grineisen ratio was calculated by the thermal relation, it likewise follows

the behavior of the thermal expansion in having a maximum at ,. 70C and dropping

thereafter until the onset of melting. The validity of the thermal relation for

the GrUneisen ratio through a major transition of this sort has not yet been

studied. However, the values in Table 56 were calculated at all temperatures

using the thermal relation.

For the two layered materials studied here (carbon phenolic and G.E.

Fiberglas) the Grineisen ratio was calculated by the two techniques previously

mentioned. The solid line in Figure 73 corresponds to the use of the thermal

relation (Equation (36)) which multiplies the volume coefficient of expansion and

the bulk modulus as scalar quantities. The points were obtained by applying the

tensor Equation (41a) to the experimental data, thereby obtaining the spherical

component of the GrUneisen tensor. As illustrated in the figure, the results

obtained from the two methods are in essential agreement for carbon phenolic,

since this material is nearly isotropic (the anisotropy ratio 2C44/ClI-C 12 is

% 0.95, compared to 1 for complete isotropy). For GEFG the agreement is also

good, even though this material is more anisotropic (2C44/C11 -C12) ,, 0.75). These

results emphasize the requirement for obtaining complete thermal and ultrasonic

analyses on nose cone materials.

Another useful quantity is the pressure derivative of the GrUneisen ratio.

This quantity can be determined by measuring the pressure derivatives of the

various quantities appearing in GrUneisen's thermal equation (Equation (36)).

However, most laboratories are not equipped at the present time to determine the

pressure derivatives of B and cp. By using the thermodynamic definitions of

these two quantities it is shown in Appendix III that the pressure derivative

of y at atmospheric pressure can be estimated as

( [ 1 /_ 1 L l( Bs~(Io - 7 - - - (47)~~P/oT o Bo s\oP ,o, T sPac P o,T](apoT= o16 DO B BP P -D
0 0
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where the zero subscript refers to atmospheric pressure. The terms (30/aP)T and

(acp/P) can be estimated from ultrasonic and thermal data as

330T 1 aT (48)

T -T %)+ 82  (49)

The temperature derivative of the isothermal bulk modulus, (9BT/3T)p, can easily

be obtained from the temperature derivative of B8, as determined ultrasonically

(see Appendix II). In Section IV, paragraph 2, a method is presented for esti-

mating the pressure derivative of the bulk modulus from thermal and ultrasonic

data obtained at atmospheric pressure, so that (3Y/DP) can be estimated without

making pressure measurements. Through the use of Equations (48) and (49), (47)

for Y' can be written to explicitly show the pressure dependence of y at atmos-0

pheric pressure as

Yo T + - -IBI

sPoT B s T B ) IT )o To

Most of the quantities in Equation (50) are normally reported for a given material,

with perhaps the exception of (MBs/aP)T As previously mentioned, this quantity

can be easily measured ultrasonically or estimated with sufficient accuracy at

atmospheric pressure (in the case of metals).

2. Determination of the High Pressure
Equation of State from Ultrasonic Techniques

In an extremely important paper, Anderson (Ref. 23) has illustrated that

determinations of the pressure derivatives of the acoustic velocities can be

combined with the definition of the bulk modulus to yield the high pressure

equation of state (see Appendix II for an outline of thif-, technique). Essentially

the technique is due to Murnaghan (Ref, 25) who asrumed that the bulk modulus

was linear in pressure. Then, the relation between the spec3fic, volume and

pressure is given by

in lf n T 4 (51)
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In Equation (51) the superscript T refers to the isothermal bulk modulus,

the prime refers to the pressure derivative, the subscript o represents atmos-

pheric pressure, and the subscript T refers to the bulk modulus derivative

evaluated at constant temperature. Equation (51) is the most important equation

in this report and is the basis for most of the following derivations. Since all

of the quantities on the right in Equation (51) can be determined ultrasonically

as a function of pressure, this equation allows a comparison between the theoreti-

cal prediction of the Murnaghan equation of state and high pressure isothermal

determinations of the equation of state. Equation (51) allows the extrapolation

of the volume to pressures which are significantly higher than the pressure range

over which the ultrasonic data are obtained, providing there are no phase changes

over the extrapolated pressure range, and that the higher pressure derivatives of

the bulk modulus are negligible. For comparisons with shock wave data, BoT and
T r

s  a 5?
B are to be replaced by B and B0, which are the pressure derivative of the
adiabatic bulk modulus at constant entropy and at atmospheric pressure, and the

atmospheric value of the adiabatic bulk modulus.

The ultrasonic data yields the adiabatic bulk modulus at all temperatures

and pressures for which measurements are normally made. Therefore, ultrasonic

pressure measurements at constant temperature yield the pressure derivative of
SI

the adiabatic modulus at constant temperature (B T). In comparing Equation (51)
oTwith shock measurements it is necessary to convert to the derivative of the

adiabatic bulk modulu3 at constant entropy. As shown in Appendix II, this

conversion is

Saln B s
B s  Bs + Y _o (2

os = BT+y n T5

where BoT is the ultrasonically determined pressure derivative of the adiabatic
S t

bulk modulus and T is the absolute temperature. The quantity BoT can be deter-
mined from the pressure derivatives of the adiabatic velocities in an isocropic

medium as follows (v 43V21 = (53)

s os

B= - (54)
o ( 4~PoT

BT= 1 + SYT (55)
B1
T
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so that

gB = 2 -AV' Vjo + 1+ YT (56)
P oT ff oS 0 o  £ Vz -3V

where V and Vt are the longitudinal and shear velocities, respectively. The

derivative as determined in Equations (52) and (56) must be used when comparing

the Murnaghan equation with shock data.

In comparing Equation (51) with hydrostatic pressure measurements as obtained,

e.g., in the Bridgman technique, the constant temperature derivative of the iso-

thermal bulk modulus should be used. Anderson (Ref. 23) gives the correction

from the adiabatic to the isothermal derivative at atmospheric pressure (P o)

and constant temperature as follows

o,T o,T 2 \/ OT o (o,1

+ ETV (--j 2  [Bs - -2(a (57)[ I/ so: T (Tb]

As mentioned, the temperature derivatives of the velocities yield the temperature

derivative of the adiabatic bulk modulus. However, the temperature derivative

of the isothermal modulus at atmospheric pressure as required in Equation (57)

is given, as shown in Appendix II, as

(B'
(aBs

(3BT 
-T B By

'T (1 + YT) (1 + aYT)2

B YT pBT

(1 + 8YT) 2 - (1 + 6YT) 2  (58)

The last term in Equation (58) can usually be neglected, as previously illustrated

for aluminum, magnesium, and gold. However, in principle, all of the quantities

appearing in Equations (57) and (58) can be obtained through ultrasonic and

thermal experiments, yielding B T required in the Murnaghan relation

(Equation (51)).



AFWL-TR-67-9 1

As Anderson (Ref. 23) indicates, the derivation of the Murnaghan equation

relies upon the assumption of the linearity of the bulk modulus with pressure.

He states that, generally the magnitude of Bs i is zero to at least two or three
0

significant figures.* This may not be true in all materials, particularly some

of the plastics; however, contemporary ultrasonic pressure experiments easily

yield the bulk modulus to one part in 103 so that a magnitude of Bs i as large
0

as 10-2 could be determined. In these cases, the approach used by Murnaghan

could be modified to include the second derivative of B in Equation (51). In

Appendix IV it is shown that the resulting equation can be written as

Vo [i + aP /c  
(59)

where
B''
0a=B' - c

0

Bi'
0

b = B' + c
0

c =M fjT - 2B B''
0 0 0

The subscripts have been left off the bulk modulus and its derivatives with the

understanding that either the adiabatic or isothermal values are used, depending

on whether the hydrostat or adiabat is being determined.

Anderson (Ref. 23) also shows that the range of the Murnaghan equation is

not restricted to the pressure range in which the bulk modulus is determined

(3 to 10 kbars). In fact, he illustrates that this equation can be used to

extrapolate the volume to several hundred kbars in metals, excepting phase

changes. The applicability of the technique relies upon the accuracy with which

B and B' can be determined, and upon the linearity of the bulk modulus.
0 0

*
It has recently been brought to the author's attention that Ruoff (Ref. 41) and
Pastine (Ref. 26) have presented ways of estimating the second derivative of
the bulk modulus from ultrasonic data combined with appropriate theoretical
equations of state. They also discuss the effect of this derivative on the
nonlinear behavior of the shock velocity versus particle velocity in metals and
derive the resulting equation to quadratic terms in the particle velocity.
This approach is outlined in Appendix V. A method is presented for estimating
the order of magnitude of B".

0
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However, Equation (51) is fairly insensitive to uncertainties in the pressure

derivative of the bulk modulus; a 1 percent error in B' changes the extrapolated
0

volume at P = B by less than 1/2 percent.0

As emphasized, the most accurate method for determining the bulk modulus and

its pressure derivative is through an ultrasonic-hydrostatic pressure technique.

However, the derivative can be estimated from a theoretical relation derived by

Dugdale and MacDonald (Ref. 27). They give the pressure derivative of B in terms

of the GrUneisin ratio as

B = 2Y + 1 (60)
o,s

As an example, the information in Table 57 has been obtained for 6061-T6 and

1060 Al at 250C

Table 57

THE RELATIONSHIP BETWEEN THE GRUNEISEN RATIO
AND THE PRESSURE DERIVATIVE OF THE BULK MODULUS IN ALUMINUM

6061-T6 1060

Y 2.03 2.06

B 751 kbar 743 kbaro's

B 723 kbar 716 kbar

Bs  (Eq. 53) 5.06 5.12O,5

B' (Eq. 49) 5.23 5.29
o,T

Figures 74 and 75 illustrate the applicability of using the Murnaghan equation

in conjunction with the above data to estimate the high pressure equation of

state of these two alloys. Also shown in Figure 74 for 6061 Al are some dyna-

mically determined high pressure points by Lundergan and Herrmann (Ref. 28) and

a least-squares compilation by Walsh, et al. (Ref. 29). As observed in the graph

the agreement between the estimated curve and the actual data is particularly

good to ^ 450 kbars considering that the pressure derivative was not directly

measured. The same agreement is observed for 1060 Al in Figure 75, although

experimental high pressure data for 1060 are somewhat lacking. However, this

illustrates a fundamental advantage of this technique. That is, tnat the high

pressure equation of state of materials as obtained through the Murnaghan equation
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can be checked by only a few experimental high pressure points to test for phase

changes, and thus, to ensure the reliability of the estimated PVT relation. The

experimental data in Figure 75 are those of C.D. Anderson, et al. (Ref. 30) and

Munson and Barker (Ref. 31). The curves in Figures 74 and 75 were computed from

the pressure derivatives of the isothermal bulk moduli at constant temperature,

and therefore represent the hydrostats.

The technique is likewise expected to apply to the estimation of the high

pressure equation of state in plastics. However, there are some reservations

applicable to the use on this class of materials. First of all, the bulk modulus

in plastics is significantly lower than that in metals (% 30 to 50 kbars versus

"u 700 kbars in metals). This places some restrictions on the pressure range

within which the volume can be extrapolated within a prescribed degree of accuracy.

Second, plastic materials generally exhibit a higher degree of viscoelasticity

than do metals. This phenomenon leads to complex velocities of propagation, and

consequently, to complex elastic moduli. To truly relate the Murnaghan theory

to dynamic data in these cases, it will be necessary to evaluate the effect of

temperature and pressure on the relaxation processes involved in viscous damping,

and relate these mechanisms to the effective moduli for shock wave propagation

(or to the moduli from isothermal compressibility experiments). This will neces-

sitate the measurements of acoustic velocity and attenuation versus frequency

for different values of the pressure and temperature. Third, the effect of the

many transitions in plastics, such as glass transitions, should be studied regar-

ding their effect on the equation of state. Last, some of the nose cone materials

are extremely anistropic, which might be resolved by determining the linear

compressibilities and their pressure derivatives. If the compressibilities are

linear in pressure, this fact could be used along with the definitions of the

velocities and moduli to provide an analytical equation for the length change

versus pressure. For reference purposes the linear compressibilities are pre-

sented here for a transversely isotropic medium. The compressibility along

the x. axis (i - 1,2,3) is defined as

1.1

Xx (x,) (61

which is found from the total compressibility by separating V(x,y,z) into (x

(X2 ) +4X3), where the V2s represent lengths along the three coordinate axes.
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In Appendix I, it is shown that the compressibilities along the layers, X

and perpendicular to the layers, X , are given as

c33 - c13
X c33  C12) - 2c 3  (62)

Cl + C 12 - 2C 1 3

X =3 (cl + C - 2c 2  (63)

The total compressibility is then given as

XT = X11 + 2×1 (64)

as represented in Equation (38).

Figure 76 shows the predicted hydrostat for (TFE) Teflon (density 2.19 g/cc).

First, it is noted that the agreement between the predicted curve and the experi-

mental compressibility points of P.W. Bridgman (Ref. 32) is not good for pressures

higher than about 10 kbars. However, Bridgman found a discontinuity in volume

at % 6.5 kbars, which he associated with a polymorphic transition.* Therefore,

the use of the Murnaghan equation is not reliable for pressures above this

transition if the bulk modulus and its derivative are determined at lower pres-

sureF. The solution to this problem would Le to make velocity measurements above

6.5 kbars, expand the bulk modulus about this pressure, and use the Murnaghan

equation near this pressure, with tae new values of B and B'. This would there-0 0

fore require velocity measurements to be made over a pressure range of atmos-

phere to , 10 kbars. It would also be worthwhile to evaluate the effect of

temperature on this transition, because the pressure at which the transition

occurs might be significantly decreased at higher temperatures. This is

especially applicable to plastics, because the moduli in plastics are rather

strong functions of temperature.

The Dugdale-MacDonald relation was used to obtain the pressure derivative of

the bulk modulus in Teflon, and to thus obtain the curve in Figure 76. However,

it is expected that this relation may not be generally valid in plastics. In

particular, it gives a poor estimation of the derivative of the bulk modulus

in polystyrene. Hughes and Kelly (Ref. 33) have measured the third-order elastic

Such transitions are ordinarily associated with a change in lattice structure
which suggests some degree of crystallinity in Teflon.
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constants in polystyrene, including the bulk modulus as a function of pressure.

They found that the bulk modulus was linear to 9 kbars with a derivative of 8.89.

The Grneisen ratio calculated from their results and handbook values for 6 and
t

C is 0.53, so that the derivative Bs from the Dugdale relation is estimated as
P Os2.06. There is thus a significant difference between the actual derivative and

that estimated through the Dugdale-MacDonald relation, which emphasizes the need

for a direct measurement of this derivative. Figure 77 shows the result of using

the Murnaghan equation for the two different values of B' in polystyrene. The
' 0

dashed line corresponds to the estimation of B s by the Dugdale equation,
o,s

and the solid line represents the use of the actual derivative as determined by

Hughes and Kelly. B was approximated as B for these calculations because
oT os

information was not available on the bulk modulus, specific heat, or volume coef-

ficient of expansion versus temperature. Also shown in Figure 77 are some

compressibility points by Bridgman (Ref. 32), some dynamic data by Wagner, et al.

(Ref. 34), and Hauver, et al. (Ref. 35). This case shows that the Murnaghan

equation equally applies to plastics. However, it also illustrates that the

Dugdale-MacDonald relation is not necessarily valid for plastics.

These two examples illustrate the need for performing ultrasonic pressure

measurements on plastics to predict the high pressure equation of state of these

materials. Besides the isothermal measurements of Bridgman (Ref. 32) and the

ultrasonic data of Hughes (Ref. 33) very little high pressure data (besides shock

data) is available on plastics. Some older work on polyethylene and Lucite

to % 1 kbar has been reported by Hughes, Blankenship, and Mims (Ref. 37).

Practically no information on the pressure derivatives of the elastic constants

is available on the relatively new laminated materials, such as carbon phenolic.

It should be mentioned that shock measurements can be used to obtain the

derivatives of the bulk modulus versus pressure. However, the derivative obtained

in this technique is less accurate than the ultrasonic technique, because it

involves the second derivative of the Hugoniot, whereas, the derivative obtained

ultrasonically involves the first derivative of the velocities versus pressure.

As shown in Section IV, paragraph 3, the ultrasonic technique can be used to

estimate essentially all the parameters measured in the shock technique, such as

shock velocity and particle velocity versus pressure. The estimations are

restricted to pressure ranges in which transitions are not present. However, they

illustrate the capabilities of the ultrasonic method and ways it can be used, in

conjunction with shock techniques, to reduce analysis time and increase the

available knowledge on the equation of state of solids.
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3. Determination of the Shock Velocity and Particle
Velocity Versus Pressure by the Ultrasonic Technique

Ruoff (Ref. 41) and Pastine (Ref. 26) have significantly increased the

applicability of the ultrasonic technique by deriving the relation between shock

velocity and particle velocity in terms of measurable quantities. In terms of

the expansion of the shock velocity, Us, to quadratic terms in the particle

velocity, p,

U (P) = a + bu + cu2  (65)
s p p

they give the coefficients a, b, and c as

a = U (P = 0) =S Po

b= 1i+ Bs/

4 os

c 7= 2 - b + 2 + (66)

(See Appendix V for the derivation of these constants.) All of the terms

appearing in the constants a, b, and c can be determined ultrasonically so that

the shock velocity-particle velocity curve can be estimated by making pressure

measurements of the acoustic velocities. For most materials the second deriva-

tive of the bulk modulus is very small (see Appendix V) so that the coefficient

c is approximately zero and a linear relation represents the shock velocity, which

is in agreement with shock measurements. However, the linear relation is only

true on the average for the wide variety of materials studied with shock wave

techniques, and there have been notable exceptions.

Both Ruoff (Ref. 41) and Pastine (Ref. 26) have used Equation (65) to explain

the existence of curvature in the shock velocity versus particle velocity. Ruoff,

in particular, has shown how the ccnstant c can be evaluated from ultrasonic

measurements on the alkali halides by assuming the Born model of the interaction

potential to evaluate the derivative B''. This assumption is not necessary if

the derivative can be determined directly. However, the bulk modulus is suf-

ficiently linear with pressure for most materials so that contemporary ultrasonic

techniques are not sensitive enough to detect the second derivative of the bulk

modulus. The sensitivity of the ultrasonic approach can be extended by increasing

the pressure range over which measurements are normally made, or by using materials
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with small bulk moduli. Plastics should allow the determination of the second

derivative of the bulk modulus, and thus, allow comparison of Equation (66) with

shock wave data over a large pressure range.

The shock velocity and particle velocity can also be expressed in terms of

the pressure. If the Murnaghan logarithmic equation is a valid representation

of the equation of state for most solids, which is somewhat confirmed by the

good agreement between the experimental and theoretical data for most materials

when phase changes are not encountered over the region of application, this equa-

tion can be used to predict the shock velocity and particle velocity versus

pressure. To derive these quantities the conservation laws for mass and momentum

are needed. These are

(Us - up) = PU (67)

P - P = p uU (68)

Here, u is the particle velocity behind the shock front, U is the shock velo-p s

city, p and p are the respective densities behind and in front of the shock,

and P and P are the corresponding pressures. It is shown in Appendix IV that

the shock and particle velocities can then be written as

U (P) A'P x 109 (69)
sOB

u ( P x-A 0 (70)

P 
0

whereB

Bs

BST

B s =P + 1 -o

Equations (69) and (70) are written so that for P and B 
s in kbars and p in

0 
0

g/cc, the velocities are in units of cm/sec. The important point about the two

equations is that the three required quantities kB0 5 , Bos 0 can all be

evaluated at atmospheric pressure by ultrasonic techniques. The applicability
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of these two equati ns in predicting the shock and particle velocities at high

pressure rests upon the same assumptions involved in predicting the relative

volume versus pressure; namely, that the bulk modulus is linear in pressure and

that the material does not exhibit transitions over the extrapolated pressure

range.

Figures 78 through 88 illustrate the agreement between the estimated shock

and particle velocities versus pressure, and the actual experimental data. The

graphs in these figures represent compressible and incompressible materials,

alloys, single crystals, and one plastic. With the exception of polystyrene,

the values of B and B were taken from Reference (23). The pressure measure-
0 os s s

ments of Hughes and Kelly (Ref. 33) were used to evaluate BS and BoT for
polystyrene. The shock wave data in all these figures were taken from the

Lawrence Radiation Laboratory's compilation, "Compendium of Shock Wave Data"

(Ref. 36).

The agreement between the extrapolated curve and actual data for potassium

and sodium is particularly good to about 300 to 400 kbars, considering the rela-

tively low bulk modulus in these materials. The shock velocity for NaCl (Figure

81) is extrapolated to only e 250 kbars because of a transition in the region

220 to 270 kbars. The dashed line in Figure 81 shows the result of extrapolating

beyond the transition.

The agreement between the extrapolated curve and the experimental data for

A1203 is not as good. The curve in Figure 82 was calculatsu For polycrystalline

A120 3. However, it falls between McQueen's experimental data for single crystal

and polycrystalline A1203.

The agreement for polystyrene, which in comparison to other materials

presented here is more compressible, is fairly good to I\ 150 kbars. The data

illustrated in Figure 85 suggest a transition in the region of 150 kbars.

The extrapolations for magnesium and iron are good; however, the maximum

pressure to which the shock velocity for iron can be extrapolated is nu 130 kbars

because of a transition at this pressure.

The extrapolated curve of shock velocity for aluminum is within u 3 percent

of the experimental data at 450 kbars and within % 5 percent at 800 kbars.

Figure 88 shows the estimated particle velocity in aluminum versus pressure. The

agreement between the experimental values and the theory is within % 5 percent to

800 kbars. The experimental shock data shown in Figures 87 and 88 for aluminum
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Figure 78. Shock Velocity Versus Pressure in Cadmium.

were obtained from a number of investigations on different alloys of aluminum.

No correction was made for the difference in density between the reported experi-

mental data and the value used here (2,70 g/cc).

Figures 76 through 88 illutitrate that the Murnaghan equation can, in many

instances, be combined with the laws of conservation of mass and momentum to

yield fair predictions of the shock and particle velocities at high pressures,

providing the ultra onic data at atmospheric pressure is not used to extrapolate

across a phase transition. The agreement between the theoretical and experimental

data provide further confidence in using the Murnaghan equation to extrapolate

data, obtained over th -.-trssure range of 0 to 10 kbars, to significantly higher

pressures. The evalu4tion of the second derivative of the bulk modulus will

allow a more accurate estimation of the density versus pressure (Equation 59),

and should thus improve the agreement of the shock velocity and particle velocity

versus pressure through the use of Equations (67) and (68).



AFWL-IR-67-91

POTASSIUM

7.0 N6

S1bhT 3.9?
Po: 0.860 I/cc

6: 5.0

00

*.
U

3.0

2.0

0 100 A'a
PRESSURE, k~brs

Figure 79. Shock Velocity Versus Pressure in Potassium.
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Figure 83. Shock Velocity Versus Pressure in Magnesium.
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4. Additional Thermodynamic Applications
To the Equation of State

This last discussion on applications is to further illustrate some of the

ways in which experimental ultrasonic and thermal data can be used to obtain

many other thermodynamic parameters. Although some of these are not presently

in wide use regarding thermodynamic studies on operational materials, it is

expected that such refinements may be required as material characterization

programs become more exact.

a. Debye Temperatures

One such parameter falling in the above class is the Debye temperature, 0.

Although this parameter is not generally considered in response physics as applied

to present day technology, it is important in the fact that it indicates the

temperature range in which mechanical and thermal properties such as the bulk

modulus, expansion coefficient, and specific heat approach fairly constant

behavior. It is also important in the physics of condensed states, because the

classical theory of solids gives relationships between separate physical parame-

ters in terms of 8 on which the pressure depends. The Debye temperature may be

determined ultrasonically and expressed in terms of the corresponding rate of

propagation of elastic oscillations by

63 2 h (IN 1(71)

where N is Avogardro's number, v is the volume per mole, and V and Vt are the

longitudinal and transverse velocities.

Ryabinin, et al. (Ref. 140) have expressed Equation (71) in terms of the

bulk modulus, B T , and the Poisson coefficient, o, by

h 9N )1/3 (BT)1/2 V1/6 (72)e i = 47 Mli/ f 1/3(o(2

where M is the mass, f(o) is the function of o, and the other symbols have their

usual significance. If the pressure and temperature dependence of the volume

and Poisson coefficient are known, one could calculate the Debye temperature

ultrasonically, and then use it to express the v, iation with the coefficient

of expansion, melting point, or other physical parameters.
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b. Specific Heat at Constant Volume

Another quantity of significant interest is the specific heat at constant

volume, c . As shown here and in Appendix I, this quantity can be calculated

from the experimentally determined values of the specific heat at constant pres-

sure, the expansion coefficient, and the bulk modulus. The pressure derivative

of c may be expressed as
v

2c I T la (aT) --1%
( T- -t 

-[ (T P] (73)

I a

The difference in the heat capacities (cp - cv), may be determined by subtracting

Equation (73) from Equation (48) which gives the following expression:

±CP c ) T$21 /aXT\
T + P+ (74)

Therefore, to calculate the pressure derivative of (cp - cv), one must know the

dependence of the compressibility on pressure and the variation of the coef-

ficient cf expansion with temperature.

Heat capacity at constant volume data can be obtained from experimentally

determined c data by the relation

TB2BTcv  P Cp--P(5

However, at low temperatures, the formula for the heat capacity as given by

Equation (35) is more uselul in estimating cv, due to the difficulty of measuring

8 and B at very low temperatures.

c. Volume Coefficieut of Expansion

If the variation of the bulk modulus, density, and heat capacity with

pressure is known at very low temperatures, the variation of the coefficient of

expansion can be calculated from the thermal GrUneisen ratio (Eq. 36) because

at these low temperatures y i. assumed to be constant and independent of pressure.

Ryabinin, et al. (Ref. 141) have shown that the dependence of the coefficient of

thermal expansion on pressure can also be calculated if the relationships v = v(P)

and 0 = 0(P) are known. Since the thermodynamic potential is

P= (P) + 0 f(I) (76)
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the volume is given by the relationship

V = Mp +- f - f) (77)

and the coefficient of expansion by

"- -T de f ' '  (78)

In the above formulas, the quantities f' and f" are the first- and second-pressure

derivatives, respectively, of the function f describing the functional dependence

of the Debye temperature.

Thermal expansion data at high pressure presented by Ryabinin, et al.

(Ref. 140) serves to illustrate that the expansion coefficient decreases with an

increase in pressure. For pressures up to 30,000 kg/cm2 , he measured the percent

decrease in the expansion coefficient for iron, copper, and silver as 6.1, 10.4,

and 16.4, respectively.

d. Entropy

The application of thermodynamic relations to changes in properties of

solids as a function of temperature at constant pressure are illustrated in

Appendix VII. Similar thermodynamic relationships may be derived to express

property changes as a function of temperature and pressure, e.g., the variation

of entropy, S, with pressure at constant temperature is given by

/as _(79)v
\aP/T - aVTP =  8V (79)

whereas the entropy variation with volume is given as

(asT" (aP)V BT (80)

These equations illustrate the usefulness of thermal and ultrasonic data in

obtaining these relationships.

If 8 is negative in the preceeding equations, i.e., (S/3P)T > 0 and

(OS/aV)T < 0, the entropy must necessarily increase with increasing pressure and

decreasing volume. (Negative expansion coefficients are common for certain

glasses, as well as pyrolytic graphite.) If 8 is positive, the entropy must
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decrease with increasing pressure and decreasing volume. A decrease in entropy

indicates the material is attaining a greater degree of order and the integration

of Equation (79) at constant temperature gives the difference in entropy at pres-

sure P and atmospheric pressure, P0, by

(s - S -- fa~ dP- P Ov dP (81)\P P o, 5T 1P

Therefore, from the variation of the coefficient of expansion with pressure,

(8 - a + dP), and the variation of volume with pressure, the entropy can be

calculated as a function of pressure.

e. Energy Relations

The variation of internal energy is given by dU - TdS - PdV where -PdV

represents the work of compression and is dependent on the internal energy and

the entropy changes. For an adiabatic compression, the work is dependent only

on changes in the internal energy, and results in an increase in temperature.

This temperature increase may be calculated by

dT =OvT dP (82)

The variation of free energy, AF, of a solid with pressure at constant

temperature, increases with an increase in pressure, because AF a -fPdV (which

is the work of compression sometimes defined as the Helmholtz free energy, A).

The latter is related to Lhe Gibbs free energy, G, by G - A + PV or dG = VdP - SdT.

Proper manipulation of thermodynamic equations shows that the variation of the

Gibbs free energy with pressure, is expressed as

( L) -V- V. (1 + 8AT) (83)

which makes use of the volume and the volume coefficient of expansion as a

function of temperature.

f. Fusion Temperatures

The GrUneisen ratio at the fusion temperature, yf, can be determined by

the equation

T Bf s

If - c - f f (84)
v,f Pf Cpf *f
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if all parameters are measured at the fusion temperature. Furthermore, the

volume coefficient of expansion at fusion, 6f, may be approximated from

8f U O(solid) - 8(liquid) (85)

The bulk modulus at fusion, Bf, could be obtained from ultrasonic

measurements made close to the melting temperature, or approximated from the

following relation

- Bs [1 - n B(Tf - To)] (86)

where temperatures are given in *C and the constant n obtained from

Bs-Q8) (87)

varies from approximately 3 to 10 for most solids. Therefore, knowing Bs , 8 and

the dependence of the coefficient of expansion on pressure, the melting kint at

a different pressure could be derived as follows

P PA' v P S,P
T f " f S o z (88)

TO v PO B SP v * (88)f f V f TTOo

where the superscripts P and Po refer to some pressure--P, different from

atmospheric pressure, Po. The constant, Z, can be calculated if we know the

variation of the volume and bulk modulus with temperature. Since v and Bs change

very little with temperature, the error involved in using Equation (88) will be

no greater than the error observed in determining the melting point under high

pressure, which is approximately ± 10 percent (Ref. 147). By the use of

Equation (88) and with the assumption that Z - 1 (Ref. 135), Strong (Ref. 147),

and Butuzov (Ref. 148) calculated the variation of melting point with pressure

up to 30,000 kg/cm2 . The difference between the experimental and theoretical

results was 0.2 percent for aluminum while for iron it was 1.70 percent.

Since the Lindemann law (Ref. 142) equates the frequency, wf, in terms

of fusion parameters with an Einstein or Debye frequency corresponding to

normal temperacures, a direct relationship between the GrUneisen and Lindemann

theories may be established. If the GrUneisen ratio at fusion, Yf, is evaluated
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by its definition from the Debye frequency of a solid, the use of Lindemann's

law and the Clapeyron equation permits one to express yf in terms of the bulk

modulus, the volume change, and the heat of fusion, AHf (Ref. 143). In equation

form this becomes

1 I TAv
Yf - + qBf AHf

where

T Av T AV
fBf Tf f +yf Cv,f f VfMf (89)

and Equation (89) gives a direct connection between the Lindemann and Gruneisen

theories.

With q defined by Equation (89) the variation of the fusion temperature

with pressure becomes

dTf 
T

which permits the evaluation of the slope and curvature of a fusion curve as a

function of yf. According to Gilvarry (Ref. 143), equation (90) signifies that
>1

if Yf > , and the fusion temperature, Tf, is an increasing function of the fusion

pressure, Pf, then the fusion curve slope is in agreement with that proposed by

Bridgman (Ref. 144). If Yf =1 at finite pressure, the fusion temperature rises
3 1to a maximum and then falls, as predicted by Tammann (Ref. 145). If yf -3

for large Pf, an asymptotic fusion temperature exists which is in accord with

the hypothesis proposed by Schames (Ref. 146).

According to Bridgman (Ref. 144) the fusion curve for all substances

is concave to the pressure axis; that is, d2 T /dP- is negative. Equation (90)
f f

then becomes

i1 1 dyf O.

if Yf >and Yf 3 d ln vf

192



AFWL-TR-67-91

SECTION V

CONCLUSIONS AND RECOIMNDATIONS

Some of the possible applications of ultrasonic and thermal investigations

with respect to the determination of the high pressure and temperature regions

of the equation of state of solids are related in this section. With regard to

the ultrasonic approach, it is shown that it is extremely useful to measure the

dependence of the acoustic velocities versus hydrostatic pressure at several

temperatures. This would allow the determination of the pressure derivative of

the adiabatic bulk modulus at several different temperatures. Section IV shows

that the Murnaghan equation could then be used to estimate the high pressure

equation of state at each temperature; thus, mapping out the complete PVT surface

(neglecting phase changes). In principle, this approach could also yield esti-

mations of dynamic quantities, such as the shock velocity-particle velocity curves

and the Hugoniot.

A study should be made regarding the agreement obtained b.tween the

extrapolated ultrasonic pressure data and the shock data on several different

materials, particularly the plastics and reinforced materials. This study might

then allow an estimation of the magnitude of the second pressure derivative of

the bulk modulus. However, every effort should be made to evaluate this quantity

experimentally through ultrasonics or some other approach, since it may improve

the agreement between the predicted and actual equation of state.

For the viscoelastic type materials a study should be made of the

contributions of the imaginary to the real part of the elastic moduli. These

contributions to the moduli could possibly be correlated with static and dynamic

equation of state measurements to determine the effect of compressional or bulk

viscosity on the high pressure equation of state. This approach would neces-

sitate the measurements of longitudinal and shear wave attenuation coefficients

over wide pressure and temperature changes, and likewise require a model to

relate the complex moduli to the static and dynamic cases.

Another extremely important consideration is the effect of porosity on the

agreement of the static (e.g., compressibility measurements), dynamic (such as

shock wave determinations), and the ultrasonic equation of state determinations.
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The effect of porosity is expected to be significantly enhanced for some of the

reinforced materials. It will therefore be necessary to relate the data obtained

in the three different techniques so that comparisons can be made between the

three. For example, the differences in the high pressure equation of state pre-

sented here for aluminum oxide with regard to the shock and ultrasonic techniques

are thought to arise from the differences in density of the specimens used in

the two approaches.

With respect to thermal analyses, it is necessary to determine the

temperature derivative of the thermal expansion coefficient with more precision.

This could probably be accomplished through the employment of an optical technique

to determine very small length changes with temperature. The temperature
dca

derivative, dj, is necessary to determine the temperature derivative of the

Grneisen ratio, and likewise to estimate the pressure dependence of the specific

heat. For many of the reinforced materials, the thermal expansion coefficient is

extremely small (A 10- 6 to 10- 5/*C) so that the differential technique used here

does not yield good results. However, an optic technique should significantly

improve the precision with which this quantity can be determined. Also, it may

be worthwhile to establish a technique for determining the pressure derivatives

of the thermal expansion and specific heat. These quantities, in addition to

the pressure derivative of the bulk modulus, are necessary to calculate the

pressure dependence of the GrUneisen ratio. Although they can be estimated

through thermodynamic relations between the pressure and temperature derivatives,

it would be advantageous to measure the piesure derivatives directly.

In conclusion, this report illustrates the use of thermal and ultrasonic data

to obtain the high pressure equation of state. The proposed approach is expezed

to be particularly useful to shock wave investigations because it is nondestruc-

tive, relatively inexpensive, and rapid. In addition, the approach allows an

easy determination of the complete pressure-volume-temperature equation of state.
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APPENDIX I

THE RELATIONSHIP BETWEEN THE BULK MODULUS AND THE ACOUSTIC
VELOCITIES FOR TRANSVERSE ISOTROPIC MEDIA

In Reference 4 it was shown that the stress strain matrix for an elastic

medium of arbitrary symmetry is

Cl1 c12 c13 c14 c15 c16

c21  c22 c23 c24 c25 c26

c3 1  c3 2  c3 3  C34  c35  c3 6  (92)

c4 1  c4 2  c43  C44  c45  c4 6

c5 1  c5 2  c5 3  c5 4  c55  C5 6

c 6 1  c6 2  c63 c64 c65  c66

In the case of complete isotropy all of the coefficients are zero except

C and c12 and the matrix in Equation (92) becomes

Cl1  c12 c12 0 0 0

C112 C1200c1 Cl c2 0 0 0

c c c000
12 12 11 0 0 0(93)c -Co o o112_ c12 o o

2
C11  c12

0 0 0 0 02
cll-c 12

0 0 0 0 0 2

The relations between the stiffneF.s constants and the Lame' constants A and v are

C 11  X + 2P

c12 95
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For the case of isotropic symmetry the adiabatic bulk modulus is given as

Bs X s + 2/311

(94)

V 9~~ 4/3 V )

The Grineisen ratio then takes the simple thermodynamic form

y a (95)
P C p

where 8 is the volume coefficient of thermal expansion and can be approximated

by three times the linear expansion for isotropic materials. For nonisotropic

materials both 8 and Bs represent different functions of the linear expansion

and sound velocities, respectively.

For materials exhibiting transverse or hexagonal symmetry the appropriate

stress strain matrix is (Ref. 5)

C 11 C 12  c13  0 0 0

c12  c11 c 13  0 0 0
c13 c13 c33 0 0 0

~l3 33(96)

0 0 0 c44 0 0

0 0 0 0 c44 0

o 0 0 o 0 C 112, 12
2

There are thus 5 independent elastic stiffness coefficients. The equations of

motion for displacements, u, v, w in the directions x, y, z, respectively, then

be come

a7 - =3 12 __ 13 3S

2 2 a2u 32v 32wP = + A22 s + X23 a (97)

A2w D2u a2v D2w
D z a + '23 as + '33  s7
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where s = ix + my + nz, t is the time, and

-l i2cl1 + m
2 (c li ci2)

A k j 2(CI2C2 + n 2 C44

Cll + C12)

A12  - im ( - 2

A13 " nX (c13 + c44)(98)

X2 3  mn (C13 + c4 4)

IP(CII - C12) m2  + n2X22 w 19 2 ) + M2 1 cl+nC44

X33 _ X2 c44 + m2 c44 + n2 c33

(1, m, and n are the direction cosines of the normal to the plane wave.) The

velocities corresponding to the three solutions of Equation (97) must satisfy a

determinant of the form

X - pV2  X12  X13

X12  X22 - pV2  X2 3  = 0 (99)

A13  A2 3  A3 3 - PV2

Substituting in the values of the Aij from Equation (98) gives

tC + M2 ( 1 cl 1c2) Im(Ci1 + c12) ni ci + c

+ n2 c44 - pV2

m 2 2 + m2c ll  un (c1 3 + c44) 0

+ n2 c 44 -pV
2

nt (C13 + C4)mn(c1 3 + C44)Z + m2 )C44

- - pV2

(100)
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Let the axis perpendicular to the layers to be ideaLtfied as the z-axis. Then

waves transmitted along this direction (a - 1, Z = m = 0) have velocities

V, ; 3 , displacement along the z-direction

(v5,-) , displacement in any direction in the z-plane

Now, consider propagation along the x-direction (e.g., Z - 1, m - n - 0). The

three possible waves are

V - , displacement along x-direction

(VSo) z-, displacement in z-direction

x) Cll- C12

( Y) C 12 , displacement in y-direction

To determine the fifth constant, a wave is transmitted along an axis 45 degrees1
between the x- and z-directions, i.e., 2 - n - , m - 0. The two solutions of

Equation (100) are then

( "  I I - c 2 + c 4y 4

sV 5 C displacement in y-direction

V / 2 + C33 + c13 + c 2

Vt,45 =2P

where the particle velocity for the last wave velocity has the direction cosine

a M Y[2(+ + -T+J

where the displacement has components

au + 8v + yw

Hence, measurements of V , V , V , (V ) , and (Vsrx)y rllow a determi-

nation of all five constants. For arbitrary angle of incidence with the z-axis

the longitudinal velocity is given as
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2p = cll sin2k + c 3 3 Cos2 + C

+ -ci C44) sin2 ~ -C 33 -C 44) cos2 ]2  (101)

+ 4 sin2  cos2 * ( C13 + C44 )2 1/2

where 0 is the angle between the direction of propagation and the z-axis. The

five elastic constants corresponding to the symmetry condition of transverse

isotropy can then be obtained through Equation (96).

The matrix specifying the strains as functions of the stress is similar to

the 6 x 6 matrix in Equation (92), except that the entries are the adiabatic

compliance coefficients sj. The adiabatic compressibility of a solid is defined

as

XS_ (102)

where v is the specific volume and P is the pressure. In terms of the compliance

coefficients the general formula for arbitrary symmetry is

XS = S11 + s22 + S33 + 2 (812 + s13 + s23) (103)

The adiabatic bulk modulus is defined as

as.

1
xs

1
5iil + s22 +8s33 + + i3+ s2 (0)

Therefore, the bulk modulus can be obtained for any specimen of arbitrary symmetry

by using the values of pV 2 to solve for the stiffness coefficients cii, inverting

* the matrix (Equation (92)) to obtain the compliance coefficients sj and using

Equation (104). For transverse isotropy the resulting expression for the adia-

* batic bulk modulus is Bs =  Bc 3 3 - 2c 3  (105)

+ C12 + 2c33 - 4c13

199



AFWL-TR-67-91

Because of the radical in the third relation in Equation (101) there is

some ambiguity associated with the proper choice of the plus or minus sign, and

hence, in the value of c13 in the case of crystals. The correct choice is deter-

mined by lattice stability conditions. For a solid to be stable, the elastic

stress should have a minimum at zero stress. As Alers and Neighbours show,

(Ref. 38), the criterion is satisfied if all the principal minor determinants of

the matrix (Eq. (92)) are positive. For hexagonal symmetry or transverse iso-

tropy they show that the following equalities must hold

C112 - C12
2 > 0

c33 C11 + c12  - 2c13
2  0 (106)

c11 c33 - c 13
2 >0

These conditions allow the correct determination of c13 in metals satisfying

this symmetry class. However, for the layered structures considered here, it

is advantageous to check these criteria by comparing the results obtained through

their use with results obtained in other experiments. For example, to predict

the high pressure equation of state from ultrasonic measurements, it is necessaiy

to know the bulk modulus. The resulting extrapolated equation of state can be

compared with the dynamic measurements to determine the proper value of the bulk

modulus, and hence, to check the inequality relations. The outlined method then

provides a way of calculating the GrUneisen ratio in Equation (95), when the

volume coefficient of expansion is properly determined.

As mentioned in Section IV, paragraph 1, the values of the volume

coefficient of expansion and the bulk modulus cannot simply be inserted into

Equation (95) to calculate the GrUneisen ratio in anisotropic materials.

Instead, as Key shows (Ref. 150), the GrUneisen ratio must be considered a tensor.

Key gives a derivation of the tensor relations for various symmetry classes.

A somewhat different approach will be used to derive the tensor relationship for

transverse isotropy.

Equation (95) can be written as 8 BT

P c (107)

1 (2PO
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since

i8V P aVT k )V

Generalizing Equation (107) gives matrix elements of the Gruneisen ratio as

ij PC a' )(108)
V T V

where the stress matrix for transverse isotropy is given in Equation (94).

In Equation (108), the volume of the reference condition is to be held constant

so that the dilatational strains from equilibrium are zero. The coefficient Y

can be computed from Equation (108) as

_ xxYxx = PCv V (,- /c xx U 0 (109)

o is given from Equation (96) asxx

a iC1 1  xx +c 12 cyy c13  zz (110)

By virtue of Equation (107) the stiffness coefficients in Equation (110) are

isothermal. Equation (109) for the 11 matrix element of y then becomes at zero

strain

Y E c1 Ix + C12 e + C1 3  - 0 (111)

or

_ +j + zz (112)
0xx P 11-3T+ 12 8T 13 -T J 0(

But from the generalized definition of the expansion coefficients (Ref. 39)

aJ (I- 1 (113)
ij \T 0
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so that Equation (112) becomes

=-I [ + c12 ayy + c azz]
Yxx PC V  c1axy

(114)

M Pc V  Cll all + C12  all + C1 3  a33

Similarly,

Yyy Yxx

Y = P [2C 13 
a ll + c3 3 

a 33] (115)

Since the thermal expansion matrix for transverse isotropy is diagonal in the

principal axes, the off-diagonal components for the GrUneisen tensor are zero.

Therefore, the complete matrix for transverse isotropy is

Y[1 Y12 Y13 Yxx 0 0

Y21 Y22 Y23 0 Yxx 0 (116)

Y31 Y32 33 J 0 0 Yz.j

and the spherical component is

Y 1 (2Yxx + yzz (117)

Key (Ref. 150) gives the conversion from the specific heat at constant pressure

to that at constant volume for transverse isotropy as

c = C - . [2czl Ci + c12  + 
4all %3 c13 + a2 c 3] (118)
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where the cij are the isothermal constants. He also gives the conversion from

the adiabatic compliance coefficients sij to the isothermal ones as

a2 T

T s T

11 PCP

s12 s 12 pc-

T s + 11 a33T (119)
813 S 3 +

T s a 3T
833 = 833 pc

In Equations (118) and (119), all and a33 correspond to a and a 1 ' respectively
as used earlier.

Once the adiabatic stiffness coefficient matrix is obtained through the

equations presented earlier in this appendix, the matrix is inverted to find

the adiabatic compliance matrix. Relations in Equation (119) are then applied

to find the isothermal compliance matrix (the only other coefficient needed for

transverse isotropy is s4Twhich is equal to 944 ), and this matrix is then

inverted to obtain the isothermal stiffness coefficients needed in Equations (114),

(115), and (118).

This method then allows the determination of the GrUneisen tensor for

materials which are not isotropic.
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APPENDIX II

DERIVATION OF THE MURNAGHAN EQUATION

The Murnaghan logarithmic equation, as normally used, is based upon the

linearity of the bulk modulus with pressure. This equation is generally derived

through the definition of the isothermal bulk modulus, defined as

BT(P) = -v(P)( T (120)

If the bulk z'odulus is linear with pressure, Equation (120) can be written as

/(pv T T'
VI BT  +B P (121)/v o BoT

which upon integrating between the limits v0 and v and P and P becomes

which on integration, yields

rT T' 1-(1 B oT I

in ln T' (122)
71 _T 1 + B TvP

oT B oT P

Since P is approximately 1 bar, Equation (122) can be written to a good approxi-

mation as

v in L TT(T
In -2

BT

1

-- ffi BoT + 1 o(123)
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Equation (123) can then be used to estimate the hydrostat to pressures beyond

the range of experimental investigation providing that (1) the bulk modulus is

linear in pressure, (2) that no phase changes exist over the extrapolated pressure

range, and (3) that the isothermal bulk modulus and its pressure derivative at

constant temperature are precisely evaluated at atmospheric pressure. Isothermal

compression experiments yield one method of determining BT and BTv However, the
0 T

pressure derivative is found only by differentiating a curve fitted to the pres-

sure dependence of the change in volume. Hence, the accuracy with which B can
oTc

be determined suffers with this method. A much more accurate way of determining

the bulk modulus and its isothermal pressure derivative is through the determina-

tion of the adiabatic sound velocities versus pressure. Although this technique

yields the adiabatic bulk modulus and its isothermal derivative, the data are

easily converted as follows. The isothermal modulus is given in terms of the

adiabatic modulus as

BT(PT) - BSpIT) (124)
1 + By T

where B is the volume coefficient of expansion, Y is the GrUneisen ratio, and T

is the absolute temperature. The pressure derivative of the adiabatic bulk

modulus at constant temperature is easily obtained for an isotropic medium. From

the definition of the bulk modulus for an isotropic medium,

Bs 4 V2] (125)

Differentiating Equation (125) at constant temperature yields

(P aB5  Vi 2p[ A VtVt1+V2 _ V2(. L2 (126)

The isothermal bulk modulus is defined as

TP (ap\(27

BT  - vVT 7 )T

so that by Equations (124) and (127), Equation (126) evaluated at P=O becomes

Bos F0 [ Vt l+ l+]T
S= A V P=0 + (1 + ByT) (128),

B T is the quantity normally measured in ultrasonic-pressure measurements.
oT
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Anderson (Ref. 23) shows that the conversion to the isothermal pressure derivative

of the isothermal bulk modulus is given as follows

BB TB JIBBT

0

BoT Bo oT + Y TP-O

of B by differentiating Equation (124) with respect to temperature

0)

3TP T ] p8 pB

0~ - By BT() T(L 10

1 + 8yT (1 + 8Y--FY (1 + ByT) 2  (1 + 8yT) 2

All of the quantities appearing on the right in Equations (129) and (130) can

hence be determined through thermal or ultrasonic experiments.

Frequently, it is desirable to estimate the high pressure equation of state
as determined normally by dynamic techniques. While the Murnaghan equation is

still applicable, a better approximation to dynamic data is obtained by using

the adiabatic bulk modulus and its adiabatic pressure derivative. The applicable

formulas in this instance are1

The quantity Bs can be determined from the ultrasonically determined pressure

derivative of the adiabatic bulk modulus, BT, by writing

Bs= B (p,T)

dBS ff- ( 'P-)T dP + ) p dT

___-/ = ___T r/
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Or at atmospheric pressure

BS- Bs' +3T)0d IP) (132)

T\ d

Thurston (Ref. 39) gives the quantity kT as

P (133)

or by the definition of the Grilneisen ratio

y B (134)pcpP

d)s TB Y (135)

so that Equation (132) becomes

os aT /-B + I-I p

B (136)
sT B lnT

where, as previously mentioned, B is the ultrasonic pressure derivative of the
OT

adiabatic bulk modulus at atmospheric pressure and constant temperature.

The technique outlined here is not restricted to cases in which the bulk

modulus is linear in pressure. If the ultrasonic data are of sufficient precision

to allow a determination of the second derivative of the bulk modulus, a cor-

responding higher order expression can be defined as follows. From the definition

of either the isothermal or adiabatic modulus

B(v,'P) - vav)

-B+ B' P + 1 B,,p2 (137)
0 a 2 o

where either the adiabatic or the isothermal moduli and their derivatives are

to be used in Equation (137), depending on the desired application. Integrating
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Equation (137) between the limits v and v, and P=o and P gives

01

I + P(138)PO [Y+ bpJ

where

B"
0

a - B' - c
0

B"
0

b B' + c
0

c - 2 ? 2B° B

Equation (138) may be more appropriate to equation of state of solids, especially

plastics which generally exhibit low bulk moduli.
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APPENDIX III

ESTIMATION OF THE PRESSURE DERIVATIVE
OF THE GRUNEISEN RATIO

One way to obtain the pressure dependence of the GrUneisen ratio is to use

hydrostatic pressure to measure the pressure dependence of the various quantities

in the Grneisen formula

B 
s

c PC(139)

The quantity BS/p can easily be determined experimentally by using an ultrasonic

approach as shown in the text. However, the experimental determinations of the

pressure derivatives of the volume coefficient of expansion and the specific heat

are difficult at high pressure. This Appendix outlines a technique for estimating

the pressure derivative of the Gritneisen ratio. In the following it'is assumed

that the material is isotropic, and that no phase changes occur over the pressure

range of interest.

Thurston (Ref. 40) shows that the pressure derivatives of 8 and c at

constant temperature are related to the mechanical properties of an isotropic

solid as

1 ABT\
\ aTP (140)

TT 0 T

where the superscript T refers to the isothermal moduli and the temperature T is

absolute. If one has the meavs of measuring the temperature dependence of the

bulk modulus and the expansion coefficient, Equations (140) and (141) allow an

estimation of the pressure derivatives of 8 and c .

p
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Consider the derivative of Equation (139) with respect to pressure and at

constant temperature,

rap T UP P/T ' TO T aBsP1 JT (142)

B ap B S3cp\ +8 a a
pr- -)T - 'pc aP/T pc \aPT p I4Ja )

The quantity (P)T can be reduced as follows.

1
p- where v is the specific volume.

So that

tap\ 1 1a 13V'P/) T 17 aP)T

From the definition of the isothermal compressibility

X T - (144)

1

BT

Equation (143) can be written as

) T = -B

Using the defining Equation (139) for the Grfineisen ratio, Equation (142) at

atmospheric pressure can then be expressed as

(a~oT Y LT cB I'Pc aP J,T ' T aSP/~o,T B8  aP )oTj (45
0 0

As previously illustrated, the adiaiatic bulk modulus, Bo. can be determined
0

ultrasonically to within 1 percent in metals. The isothermal bulk modulus at

atmospheric pressure, BT, can thus be deduced through the following relation,

BT = BS/(l + yT) (146)
0 0
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Also, the pressure derivative I--o can be determined ultrasonically or

estimated fairly accurately through the Dugdale-MacDonald relation (Appendix II).

Therefore, if one uses Equations (140) and (141) to estimate the derivatives of

8 and cp, an estimation of the pressure dependence of y can be obtained.

Generally, the bulk modulus is linear in pressure, as are the temperature

derivatives of the bulk modulus and expansion coefficient. Furthermore, it is

expected that the dependence of the GrUneisen ratio with pressure is small, io

that the determination of the various quantities at atmospheric pressure on the

right side in Equation (145) represent the derivative of y for all pressures

(excepting phase changes).*

As an example, the ultrasonic and thermal data reported here are used to

estimate the GrUneisen ratio in 6061-T6 Al at 100 kbars. The quantities required

in Equation (145) are given in the text as

Y - 2.06
0

Bs  - 7.51 x 1011 dynes/cm 2

0

BT - 7.19 x 1011 dynes/cm 2

0

("s) P - -1.70 x 108 dynes/cm2oC

__p W -3.04 x 108 dynes/cm 2oC
VaT I

c P - 0.22 cal/gm*C - 9.21 x 106 ergs/gm'C

8 - 6.9 x 10- 5 /oC

\(a)p = x 10-8/c
2

From the Dugdale-MacDonald relation

s .1

*
It is not necessary to make this assumption if the pressure derivatives in
Equation (145) are determined experimentally over the pressure range of interest.
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From Equations (140) and (141)

(aP JoT = 1.05 x lo- 5 cm3/gmC

O(a)oT = 5.88 x 10- 16 cm2/dyneOC

All of the above calculations correspond to 300°K. Then by Equation (145)
lay\ Tis given as

(ay) -- 3.7 x 10-12 cm2/dynes

- -3.7 x 10- 3/kbar

Therefore, the GrUneisen ratio at 100 kbars in 6061-T6 Al is estimated as

100 o (a) oT

- 2.14 - 3.7 x 10- 1

0 1.77

which is approximately a 17 percent decrease in this value over that at

atmospheric pressure.

The foregoing analysis allows an estimation of the pressure derivative of y

when thermal and ultrasonic data it atmospheric pressure are available.

Equation (145) for y' can be put in a form more suitable in using experimental

data by referring to the definition of the temperature derivative of Y.

P = la) + ay /as cB
1 2T To 'aT ac

UT)~ ~ T DB S P TaT

Fl\8) L as 1 (acp (147)

y ae I +B 2  + 1 _L 1 - 1,CP)
(TT) BS \aT/r -cp (aPP

212



AFWL-TR-67-91

Then by Equations (140) and (141), Equation (145) for the pressure derivative

of Y becomes

__) s L T (1 + sYT1 IaBs - I l- Y-T /y(148)
BaI s$P/T BJ i~ VF' aT)P]

Since all of the quantities in Equation (148) are normally determined experi-aBs
mentally, except perhaps 3-, this relation allows a more convenient estimation

of Y'.
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APPENDIX IV

THE USE OF THE MURNAGHAN EQUATION IN
ESTIMATING THE SHOCK AND PARTICLE

VELOCITIES AT HIGH PRESSURE

The shock velocity and particle velocity are calculated as a function of

pressure in this section by assuming that the Murnaghan logarithmic equation

represents the equation of state of the material under investigation. The

resulting equations are expressed in terms of quantities which can be determined

at the low pressure region (to 10 kbars) by ultrasonic techniques. However,

the derivation relies upon the absence of phase transition in the pressure range

of interest to which the extrapolation will be carried.

In Appendix II the Murnaghan equation representing adiabatic conditions was

expressed as

ln( )~~ ln [Bs' (P \+](149)
In the present case, it is assumed that the shock conditions are more closely

approximated by the adiabat rather than the isothermal. For hydrodynamic flow

the continuity equations for mass and momentum are

P(Us - up) " -oU s

(150)

Po ops

where U s(P) is the shock velocity at pressure P, and p and u correspond to the

density and particle velicityo respectively. P and p0 are the initial pressure

and density.

Solving these two equations for U and u yields

U (P (151)
s pusp(P ) R, .- .P U Po (152)

1 (152)
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Substituting in Equation (150) for the density and dropping Po gives Shock

Velocity:

U (p) [a P X109]1/2 (153)

Particle Velocity:

(P) - b X 1 1/2 (154)

where a(1

b =a - 1

Equations (153) and (154) have been written for pressure and bulk modulus in

kbars; then the velocities will be in terms of cm/sec.

The important point about Equations (153) and (154) is that only ultra-

sonically determined quantities are necessary to estimate the two velocities at

high pressure. The velocities could likewise be determined for the equation of

state containing the second derivative of the bulk modulus at zero pressure

(Equation 138), Appendix II).

Figures 78 through 88 in the text show the result of using these two equations

to testimate the velocities at high pressures ( 1 bar in some cases). In

general, the agreement between the extrapolated curves and the actual dynamic

data is good.
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APPENDIX V

DERIVATION OF THE NONLINEAR RELATION BETWEEN
SHOCK VELOCITY AND PARTICLE VELOCITY

Appendix IV shows that the shock velocity is given in terms of the

pressure as

U2  o P (155)
s pU (-p pP)

where P is the pressure along the Hugoniot. The particle velocity is likewise

given as

P(l - p o/p)
- 0 (156)

UP 
Po

Differentiating these two equations gives

2UsdU - -l _ P o (155a)

(1- p /p) (1p

2:d: - d: + (156a)

It is desired to express the shock velocity in terms of the particle velocity asu(
F(u + 1 (157)

- al + a2 U + I a3U
2

where the zero subscript implies that the derivatives are evaluated at zero

pressure and initial density p0o The constant al is given by

a, = lim(Us)
U -* 0
p PP

- UI Po(1 - Oo/O)

P o

p -PO
0
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Applying L'Hospitals' rule to this relation gives

al = AP p =o0/0.
(158)

tap\ -
= Map ') P - o

p- o

which, by definition of the adiabatic bulk modulus, yields the constant al as

a,- (159)

The constant a2 is given by

a -im ~u,
u "+ 0

p

which from Equations (155a) and (156a), becomes °poa

a ra P1 - P/0)(160)p o ) (1 - Po/p) + (Po/P2)P

p0 0

Applying L'Hospitals' rule twice to Equation ('60) and passing to the limit gives

1 Ia2p) 2 I(\pP° 0 -7 o P* -- , o
0 oa2  -4P 

\

4(e

Since the bulk modulus is defined as

(162)
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and the pressure derivative of B is

B _-2.+ap )(163)

1 j a2pN

Equation (161) becomes

_ (B' -1) + 2B
-p p

a2 4B

p (164)

- (B' + 1)

Finally, the constant a3 is given by

d2U
a3 -iim ds

P-*o P

p o p0
Po

p + P0  ( p l p

d- lirn (- /p)2 (.p +P(l P/p)P(dU P)

p Alp 0

which, upon applying successive applications of L'Hospitals' rule, yields

d2U aP a2P + a3  [ ap 2 a2p

2s 1 0O o'+ P 6o P _ 3_ 020" 2o18
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Using Equation (163) and

a2B fa2P) (ap) 2  / 1 3p \ap I a2 p) a2p

p2 fak' 3 a3  . 2 ( 2
B" P 2 + (.P) BB\ W

B' -1 p3 /a 3P\ B'(B' - 1)B B7 k\-ap B

so that

p37 = B [BB' + (B' - 1)(B' -2)] (165)

d2U

Therefore, d becomes

d 2a 1 1+ B' 1 + -1 [BB '+ (B' - 1)(B' -)] (B' + 1) (16
u P al6"1 (166)

1-- (1 + B') (7- B') +BB
a, 48 6-

when evaluated at the origin along an isentrope.

Pastine (Ref. 26) shows that the volume derivative when evaluated at the

origin along a Hugoniot is equal to the volume derivative along an isentrope

to second order. However, he shows that the third derivative of the pressure

with respect to volume along the Hugoniot differs from the respective derivative

along the isentrope by a factor-! (B' + 1)Y, where Y is the GrUneisen ratio.

Therefore, Equation (165) evaluated on the Hugoniot becomes

3a[ BB" + (B' - 1)(B' - 2) + (B' + 1)Y

and Equation (166) for the constant a3 is thus modified to

1 L (1 + B')(7 - B') BB'+ (B' + I)y
a3  a 48 6 12

1+B' 8BB'' + 7 + 4Y -
48a, (1 + B'))  )  Po
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Both Ruoff (Ref. 41) and Pastine (Ref. 26) have used Equation (167) to

explain the nonlinearity between shock velocity and particle velocity in some

of the metals and alkali halides. Ruoff has devised a unique technique for

estimating B'', and thus, obtaining a3 by using ultrasonic determinations of B'

and the Born moded to estimate B'' in alkali halides. This technique can be

used only for crystals satisfying the Cauchy-Love relations and has not yet been

generalized to a material satisfying an arbitrary potential function.

Since the shock velocity is almost linear in particle velocity for a wide

variety of materials, Equation (167) can be used to estimate the order of

magnitude of B''. Setting the quantity in brackets in Equation (167) equal to
0

zero yields

B''' B' + 1 [4Y + 7 - B'](168)

[4 8B']

Since B is always positive and B' is generally positive, Equation (168) implies

that B" will be negative providing B' is less than 4Y + 7. In this case, the

shock velocity will be linear in particle velocity. If B'' is more positive

(or negative) than this value, the curvature of the shock velocity curve will be

positive (or negative).

Table 58 gives the values of B", as estimated from Equation (166), for a
0

number of materials. The elastic constants were taken from Reference 23. Ruoff

has estimated the second derivative of the bulk modulus in sodium, using the Born

model, and obtained a value of -0.063 kbar. Pastine used hydrostatic compres-

sion data to calculate B" as -0.051 kbar-1 . The value of -0.089 as estimated

here illustrates the technique of obtaining an order of magnitude estimate of

the second derivative of the bulk modulus and suggests that the shock velocity-

particle velocity curve is concave upward, in agreement with Ruoff's and Pastine's

treatments. Ruoff and Pastine both showed by the outlined technique that the

velocity curve is concave upward with quadratic coefficients of + 0.005 ,sec/mm

and + 0.016 psec/mm, respectively. The value of B'' reported in Table 58 thus
0

indicates an approximate order of magnitude of B'' to be expected in ultrasonic
0

pressure measurements.
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Table 58

ESTIMATION OF THE SECOND DERIVATIVE OF THE ADIABATIC
BULK MOLULUS FOR SEVERAL MATERIALS

Material TB:" (kbar
- )

Magnesium -0.016

Sodium -0.089

Sodium Chloride -0.022

Potassium -0.13

Cadmium -0.018

Iron -0.0040

Aluminum -0.012

Magnesium Oxide -0.0027

Aluminum Oxide -0.0021
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APPENDIX VI

THEORETICAL EQUATIONS OF DIFFERENTIAL
THERMAL ANALYSIS

Void (Ref. 42) has developed a simplified mathematical treatment relating

the area and shape of a thermogram to the heat of reaction, AH. The increase

in enthalpy of the sample, cp(s)dT(s), is equal to the heat transferred from

the surroundings to the cell. Thus, for the time interval, dt,

cp S dTS = dH + KS (TB - Ts)dt (169)

where KS is the heat transfer coefficient of the sample, cP S is the heat

capacity of the sample, dH is the heat of reaction, and TB and TS are the

temperature of the bath and sample, respectively.

Similarly for the reference cell,

cpa dTR - K? (TB - TR)dt (170)

where KR is the heat transfer coefficient of the reference cell. With proper

choice of reference material, sample cells, and the level of the sample packing,

equilibrium is reached when

P,S " cP,R " cp and KS -KR - K (171)

Subtracting Equation (170) from Equation (169) and substituting AT for TS - TR,

leads to

dH - cp d(AT) + K AT dt (172)

In order to obtain an expression for the total heat transferred, Equation (172)

is integrated between t - 0 and t - - giving

AH - cp (AT - T0) + K of AT dt (173)
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Because T is zero at t - 0 and t - w, the first term in Equation (173) also

becomes zero. The integral is equal to the total area, A, under the curve, so

that

AH = K J AT dt - K (174)

K is characteristic of the apparatus and can be evaluated by carrying out a

reaction with kno~n heat effects, allowing calibration of the apparatus.

Specifically, peak areas resulting from phase changes in a known weight of

material were measured by means of a polar planimeter. The calibration coef-

ficient was calculated from

AOf • M • R
K = (175)

A * ATS * TS

where

K - calibration coefficient, g cal/*C min

A - peak area, sq. in.

M - sample mass, g

R = heating rate, *C/min

ATS  y-axis sensitivity, *C/in

TS ax-axis sensitivity, *C/in

AHf known heat of fusion of a reference standard, cal/g

The heat of fusion or transition of unknown materials may be obtained by

proper substitution of experimentally determined K values and rearrangement of

Equation (175).

Since the heat evolved in a short time interval is proportional to the

number of moles of sample reacting

dH = - (KA/no )dn (176)

where -dn is the number of moles of sample reacted and KA/n is the heat of

reaction per mole. Combining Equations (176) and (172) and differentiating

with respect to time, yields the rate of reaction, -(d"), by

- (dn - no/KA [cp d(AT)/dt + KAT] (177)
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where AT refers to the height and d(AT)/dt to the slope of a thermogram at a

given time, t, or temperature, T.

The number of moles of sample, n, remaining at any instant is equal to the

initial number of moles, n, minus the number that have reacted:

tnn - -()dt (178)

dn
Substitution of from Equation (176) into Equation (178) gives

n = n - (n°/KA) IcP of (dAT/dt)dt + K fo AT dt] (179)

which upon integration becomes

n = n0 - (no/KA) [cp AT + Ka] (180)

where a is the area under the thermogram up to time t. See Figure 89.

dT

TIME (TEMPERATURE'.

Figure 89. Differential Temperature Versus Time
Curve Illustrating Reaction Rates.
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APPENDIX VII

THERMAL CALCULATIONS AND THERMODYNAMIC APPLICATIONS

The determination of thermodynamic properties requires accurate numerical

techniques for arriving at interpolated values of a function of one or two

variables and for obtaining differentiated properties at interpolation points.

This Appendix illustrates the determination of temperature derivatives from

experimentally determined specific heat, thermal expansion, density and ultra-

sonic sound velocity measurements.

Specific heat values were computed at 5-degree temperature intervals from

the values of the observed differential temperature, heating rate, sample mass,

and instrumental calibration constant by

Iillicalories\ (ATs - ATB) ET (181)
P\ mg • "c M * R

where

Cp - Specific heat at constant pressure

ATS = Absolute differential temperature for sample, *C

ATB - Absolute differential temperature for blank, *C

ET - Calibration coefficient at temperature, T, mcal/*C min
M - Sa iple mass, mg

R - Heating rate, 100C/min

From the computer plots of the specific heat as a function of temperature,

cp values were obtained from the straight line portions of the curve which were

used to calculate the temperature derivative of the specific heat, [acp/aT],

according to

Cp a A+BT

and

j-- "B 
(182)

where A and B are constants calculated by the computer and T refers to the

temperature in *C.
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By definition, the linear thermal expansion coefficient, a, is given by the

differentiation of the length curve by

a M - (183)

Z -A+BT+CT 2

-B + 2CT
Lat

and for the instrument used, Equation (183) becomes

a = S/ ° (B + 2CT) and -a] - 2C (184)o LaTJ

where S is the sensitivity of the instrument, and £o refers to the original sample

length measured at room temperature. Due to the inherent limitations of the

cubic curve fit caused by the round-off errors of the computer and by the fact

that the second derivative is limited to a linear variation between adjacent

Junction points, Equation (184) could not be used directly.

More reliable linear expansion coefficients were obtained from

2 2 ATI (185)T2  T1S -TI o

where £2 and L1, and h2 and h, refer to the heights of the blank and the sample,

respectively, at a temperature interval T2 - T,, where T2 was five degrees higher

than TI, and S and £o have the same significance as above.

The temperature derivative, aaI was obtained by choosing the best a values

from the a versus T plot and calculating the linear least-squares as done for

the c data.

Densities were measured at room temperature and the density at 0°C, P was

obtained from

P " PO - P0T - 1 - 3a0 T (186)

where the zero subscript refers to 0°C, 8 is the volume coefficient of expansion,

and a is the linear expansion coefficient.
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The adiabatic bulk modulus, B8, obtained from ultrasonic studies (Section I)

by

S4
8 uP(V A V2) (187)

was differentiated with respect to temperature to give

AB- 4v - - B (188)

where V z and Vt refer to the longitudinal and transverse velocities, respectively.

The thermal GrUneisen ratio, y, given by

y M 0 B (189)

was differentiated with respect to temperature to yield

la / ~ LI + 021 + _L130/\.1. ) 1a
VaT)Po o aT B s VBT cP 10

in which proper experimental values were inserted to allow a determination of

the temperature derivative of y in materials which did not exhibit phase changes.

Substitution of experimental data into known thermodynamic relationships

permitted the calculation of other physical properties, such as 
1H ps Tp

and UPT' Enthalpy, AH, and entropy, AS, values were determined from calori-

metric data. Since Q * ci, then

/Z
AH cp dT

(a + bT) dT [aT + bT2 T (191)

o T
0

/as\ C
and since - p then

TT

AS- T -) T (a +bT) dT

o o (192)

[a 
in T 

+ bT1

0

where a and b refer to the constants obtained from heat capacity data.
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The transformation of one phase into another, generally in the form of a

solid-solid, solid-liquid, or liquid-vapor transition, involves an equilibrium

reaction at a given temperature and pressure. Since the system is in equilibrium,

the Gibb's free energy, G - GB - GA a 0 and the temperature is now altered by

an amount dT. If the system is to be maintained in equilibrium, the pressure

must be altered by some quantity, dP. Nevertheless, if equilibrium is maintained

at the new temperature, T1

then

- T + AT

and

AG'p G' - 0 (193)',T' = GB - A

From this it is obvious that

d(AG) - d(GB - GA) - 0 (194)

and dGB - dGA - 0 which in differential form becomes

dGA - VAdP - S AdT

(195)

dGB a V BdP - S Bdt

Setting up the equality demanded by Equation (]94) and upon rearrangement,

Equation (195) leads to

(vB - VA) dP w( -5 b ) - d

or

dP S -SA
dl' B A (196)
dT VB VA

The value of the derivative, (dd), at the specified temperature and pressure

of the transition is obtained from the entropy change of a phase transition,

which is defined as AS - SB - SA - AHTR/T; so that Equation (196) now becomes

dP AHTR (197)
d T(V VAT
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which is known as the Clapeyron equation and which is applicable to equilibrium

between any two phases of one component.

If the equilibrium reaction results in a gas and condensed phase (liquid or

solid), so that VB - VA - Vgas - V cond . , then since Vgas " V cond . , the latter

may be neglected and Equation (197) becomes

i R (198)
ln R L T2 Tj

which is the well-known Clausius-Clapeyron equatior. This equation may be used

to obtain AH from known values of vapor pressure as a function of temperature

or vice versa, to predict vapor pressures of a liquid (or a solid) when the heat

of vaporization (or sublimation) and one vapor pressure is known.

The temperature dependence of the heat of a phase transition, AHTR, is

generally given as

(a - . Acp (199)

however, the vapor pressure does not remain constant but it is also a function

of the temperature. This may be represented by the total differential

d(AH) a aAH/p dT + -- T dP

- Acp dT +Iau B  aHA) 
(200)

P _P_ - ;-PT T

where A and B refer to the two phases at equilibrium. Since the free energy

function defines the pressure derivative as

13\aV- T AV~ (201)
-9P -T V \aT/P

Equation (200) becomes

d(AH) . AC AH ( )ln P (202)
dT P T aTP

which is applicable to all types of phase transitions. However, when both A

and B are condensed phases, the third term of Equation (202) is small compared

to the other terms in the equation and may be neglected.
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Equation (202) then becomes

a(AHTR) " c+AH 23
a CP+AiT (203)Tp T

If the phas, transition is a vaporization or sublimation, AV = V gs- RT/Pgas
and the third term of Equation (202) cancels the second and

T : ACp (204)
aTP

Although Equations (199) and (204) are formally alike, they refer to different

types of processes. The former is strictly true for a process occurring at

constant pressure throughout a range of temperatures and the latter applies :.o

a vaporization or sublimation where the condensed phase is small as compared to

the gas phase.

The change in free energy, AG, for a phase change is readily obtained from

the relation

AG - AHTR - TAS (205)

when AHTR and ASTR are the enthalpy and entropy of transition at constant

temperature. .,Fra (AGIT) 1
The temperature derivat.ve of the free energy, J T ,, may be derived

by differentiating the fundamental definition G/T - H/T - S as a function of

temperature and at constant pressure. The equation becomes

[a(G/T)] MNii _ () 206

aT j ]P + TP (LP(26

which may be reduced to

DT 3G (207)

An equation for G may also be obtained from the integration of

(-a)P - AS (208)
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where the expression for AS as a function of temperature, for substitution into

the preceeding equation may be derived from

_-_P = - (209)

DTP 3 T
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APPENDIX VIII

DEFINITIONS AND APPLICATION OF THERMAL
EXPANSIVITY MEASUREMENTS

In an elastic region the effect of temperature on strain appears in twv

ways; first, by causing a modification in the elastic constants as a result of

the angular stresses originating in the material, and second, by directly pro-

ducing a temperature strain even in the absence of an external stress. The former,

the elastic shear strain, es' originating from the angular distortion of the

material is generally small and is given by

e = Tan $ (210)8

where 0 is the tangent of the angle resulting from the distortional stress.

The longitudinal strain or elongation, c , is the result of pure thermal strains

brought about by the temperature rise and is defined by

t ._ T (211)
-£ -L

0

where 9o is the original sample length which differs from the new length L, and

a is the linear coefficient of expansion.

The total strain, e, at any point in an elastic body is the sum of the shear

or elastic strain, ct, and thermal or longitudinal strain, c , given by

t + E t (212)
a I.

If the length increases in the directio. of the x-axis, the mean length,

0), or the total strain may be referred to this axis so that Equation (212)

becomes

C *£ + aTx xx
a a a (213)

"-- ..• - S -+ ciT
M M M a

where a, S, and M refer respectively to the stress, Poisson's ratio, and an

effective elastic modulus. Referring to cartesian coordinates, if the stress
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components at the point are ax, yy, azz, a X , ayz, Czx, the strain components

are therefore,

Exx M [xx S(yy + a)] + T

C j - S(axx + az)] + aT (214)yy = [(Y yY

S1 [ozz S(axx + a)] + aTEZZ M Z y

For an isotropic cubic material, symmetry arguments show that the thermal

strain must be a pure expansion or contraction with no shear-strain components

referred to any set of axes. The total strains for a temperature change are

Ct = t = Ct = a(T - T)x y z0

(215)
t t a t

xy yz zx

where a - a - a - a which indicates that the crystal expands equally alongx y z
the three cubic axes and the thermal expansion is isotropic. Therefore, cubic

materials need only one coefficient of expansion obtained in any direction to

describe them.

It has been shown that the three principal elastic stiffness constants

necessary to describe a cubic structure are cll c12, and c44. These constants

may be determined from the velocities of three waves: (1) a longitudinal wave

which propagates along a cube axis with velocity (cl/Po )h; where P0 .is the

density; (2) a shear wave which propagates along a cube axis with velocity

(c44/po) ; and (3) a shear wave with particle motion along a 110 direction which

propagates along a 110 direction with velocity [(C11 - c12 )/2po0]. If the

elastic constants are defined by

Cil - c12 w 2c44, (216)

this relation is the condition that the crystal should be elastically isotropic;

that is, the waves should propagate in all directions with equal velocities and

be independent of orientation.
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The anisotropy factor, A, is highly dependent upon crystal orientation.

For a cubic crystal it is defined by Kittel (Ref. 152) as the square of the

ratio of velocities of the shear waves propagating in the [100] and [110]

directions:

2c44
A ff (cil - c1 2) (217)

Alexander (Ref. 151) has shown the relationship between anisotropy and

thermal expansion by assuming that each crystal has a cubic symmetry with thermal

expansion coefficients aa* ab and ac in the a-, b-, and c-directions. For a

temperature rise, AT, the macroscopic thermal expansion of a polycrystalline bar

must be 1/3 AT (aa + ab + ac ). Each grain is assumed to be restricted in each

direction by that amount. Thus, the crystal tries to expand in the a-direction

by an amount aaAT, but can only expand 1/3 AT (aa + + acc). Thus, a compres-

sive (negative tensile) stress is induced in the grain in that direction cor-

responding with a tensile strain of

a  - a AT 1 a +cx +ATc) (218)a a 3-aA+( b + c

Therefore,

1

C a  a( %+ a c  a )

Eb .1 AT (ac + aa  2a) (219)
b 3 c ax2~

and
1

c - AT (a + a - 2ac)
3 a ab

For an anisotropic material like a-uranium, axa - c so that the strains become

E 1--AT (-x
a 3 cba'

2
Cb -Z AT (a a -- 2 ab 3 a E

Ec M S AT (ab  a) Ea
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that is,

C - C  1 (220)
a c 'b

where

E=b T (a -%) (221)

If the stresses remain within the elastic range, they may be determined

from Hooke's law. Since a a a , by symmetry then
a c 2~0b by ymtyte

Lb H 1 b -S

a - (1 + S)

and the strain may be expressed in terms of the modulus, M, the strain, c, and

Poisson's ratio, S. The maximum stress induced may then be defined as

- At (i_ AT) (223)

where Aa a - 'be

The volume coefficient of a gas is generally calculated from the equation

of state, or from any empiric equation representing the relationship between

volume and temperature at constant pressure.

The volume ezpansivity of liquids and solids may be calculated from an

empiric equation representing the relationship between density and temperature

at constant pressure. Since the specific volume, v, is the reciprocal of the

density, p, it follows that

lp\T (224)

Since density data for the solid over a wide temperature range were not

available, the volume expansivities were calculated from linear expansivities.

For most crystals, there can be found three mutually perpendicular directions

such that if a cube is cut out of the crystal with its sides parallel to these

directions and heated, the angles will remain right angles, though the sides will

become unequal. These directions are called the principal axis of dilatation,
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and the coefficients of expansion in these directions are denoted by ax, a y

and az . Such a cube of sides, to, will, on being heated to T°C, become a

rectangular solid whose sides will be given by Xx t y, and z , and whose edges

will be given by

x 0 (1 + axT)

y 0o(i + ay T) (225)

z 0 o(l + azT)

The volume of this isotropic solid is given by

V M (I ) (Xy) (z) & 3 [l + (a + a + az)T] (226)

which, as a function of temperature becomes

aT y z x z (T) ; + y

or 1 3V 1 atx+ at a+ t

- - +x 1 Y + 1 z(27
V3T t-aT T aT t (227)

and x y z

8"a +a +ax y z

Since for a cubic structure a - a - a - a, the volume coefficient of expansion,x y z

8, becomes

8" 3a -= 3 (228)
0 0

which represents the volume expansivity of the crystal.

The volume coefficients of expansion of the anisotropic materials in this

report were calculated from

8 = a11 + 2a (229)

where a1 1 and a1 represent the linear coefficients of expansion parallel and

perpendicular to the chain alignment of the polymer.
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Since the degree of crystallinity, % C, may be expressed by

8a -8B

%C = (230)
Oa - 8c

expansivity data present a direct means of calculating the crystallinity of the

polymeric materials. In Equation (230), the term 8s is the volume expansivity

of the sample studied, and 8a and 8c refer to the expansivities of the amorphous

and crystalline regions, respectively. The 8 term may be obtained from measure-a

ments made after the glass-transition temperature, whereas, 8 may be obtainedc

from measurements made on the pure crystalline polymer.
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